洛谷P4219 - [BJOI2014]大融合
Description
初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作:
- 连接边\((u,v)\),保证\(u,v\)不连通。
- 询问有多少条简单路径经过边\((u,v)\)。
Solution
加边用lct,询问结果相当于\(p\)为根时的\((siz[p]-siz[q])\times siz[q]\)。
那么如何用lct维护子树大小呢?维护\(isiz[p]\)表示\(p\)在lct上的虚子树大小,\(siz[p]\)表示\(isiz[p]\)加上在辅助树上的实子树大小(子树大小也包括子树的虚子树和实子树)。当\(p=rt\)或\(p\)没有实子树时,\(siz[p]\)等于其原树上的子树大小。
如何维护\(isiz\)呢?只有当树的虚实划分变化时,\(isiz\)才会变化,也就是access和link。access(p)中有一句ch[p][1]=q,说明\(ch[p][1]\)变为虚子树,\(q\)变为实子树,则isiz[p]+=siz[ch[p][1]]-siz[q]。link(p,q)将\(p\)变为\(q\)的虚子树,因此\(q\)到\(q\)的根的\(isiz\)都要改变;因为不好实现所以makeRt(q)之后再连接,并isiz[q]+=siz[p]。
询问时,只要makeRt(p),access(q),splay(q),此时\(q=rt\),\(p\)没有实子树,\(siz\)均正确。
时间复杂度\(O(Qlogn)\)。
Code
//[BJOI2014]大融合
#include <cstdio>
#include <algorithm>
using namespace std;
int read()
{
int x=0; char ch=getchar();
while(ch<'0'||'9'<ch) ch=getchar();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int const N=1e5+10;
int n,Q;
int fa[N],ch[N][2],siz[N],isiz[N]; bool rev[N];
int wh(int p) {return p==ch[fa[p]][1];}
int notRt(int p) {return p==ch[fa[p]][wh(p)];}
void rever(int p) {rev[p]^=1; swap(ch[p][0],ch[p][1]);}
void update(int p) {siz[p]=siz[ch[p][0]]+siz[ch[p][1]]+isiz[p]+1;}
void pushdw(int p) {if(rev[p]) rever(ch[p][0]),rever(ch[p][1]),rev[p]=false;}
void rotate(int p)
{
int q=fa[p],r=fa[q],w=wh(p);
fa[p]=r; if(notRt(q)) ch[r][wh(q)]=p;
fa[ch[q][w]=ch[p][w^1]]=q;
fa[ch[p][w^1]=q]=p;
update(q),update(p);
}
void pushdwRt(int p) {if(notRt(p)) pushdwRt(fa[p]); pushdw(p);}
void splay(int p)
{
pushdwRt(p);
for(int q=fa[p];notRt(p);rotate(p),q=fa[p]) if(notRt(q)) rotate(wh(p)^wh(q)?p:q);
}
void access(int p) {for(int q=0;p;q=p,p=fa[p]) splay(p),isiz[p]+=siz[ch[p][1]]-siz[q],ch[p][1]=q,update(p);}
void makeRt(int p) {access(p),splay(p),rever(p);}
void link(int p,int q) {makeRt(p),makeRt(q); fa[p]=q,isiz[q]+=siz[p]; update(q);}
long long query(int p,int q) {makeRt(p),access(q),splay(q); return (long long)siz[p]*(siz[q]-siz[p]);}
int main()
{
n=read(),Q=read();
for(int i=1;i<=n;i++) siz[i]=1;
for(int i=1;i<=Q;i++)
{
char opt[5]; scanf("%s",opt);
int u=read(),v=read();
if(opt[0]=='A') link(u,v);
else printf("%lld\n",query(u,v));
}
return 0;
}
P.S.
比Icefox短了20行!
洛谷P4219 - [BJOI2014]大融合的更多相关文章
- 洛谷 P4219 [BJOI2014]大融合 解题报告
P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...
- 洛谷P4219 [BJOI2014]大融合(LCT,Splay)
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...
- 洛谷P4219 [BJOI2014]大融合(LCT)
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...
- 洛谷 P4219 [BJOI2014]大融合
查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") # ...
- 洛谷4219 BJOI2014大融合(LCT维护子树信息)
QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...
- P4219 [BJOI2014]大融合(LCT)
P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...
- P4219 [BJOI2014]大融合
传送门 动态维护森林 显然考虑 $LCT$ 但是发现询问求的是子树大小,比较不好搞 维护 $sum[x]$ 表示节点 $x$ 的子树大小,$si[x]$ 表示 $x$ 的子树中虚儿子的子树大小和 那么 ...
- P4219 [BJOI2014]大融合 LCT维护子树大小
\(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...
- luogu P4219 [BJOI2014]大融合
题解:原来LCT也能维护子树信息,我太Naive了 用LCT维护当前子树节点个数 具体做法维护siz[x]=当前Splay子树和指向当前Splay子树的虚边所代表的节点个数 auxsiz[x]=指向x ...
随机推荐
- log4j:WARN Please initialize the log4j system properly. 异常解决
log4j:WARN Please initialize the log4j system properly. 这个异常很少遇到,咋一看,原来是没有配置logger4j的配置文件 问题解决方法: 传统 ...
- php服务端接收post的json数据
最近用到ext与PHP交互,ext把json数据post给PHP,但在PHP里面$_post获取不到,$_REQUEST也获取不到,但是通过firedebug看到的请求信息确实是把JSON数据post ...
- 【C#】枚举
枚举 public static class CommonEnums { public enum people { /// <summary> ///男人 /// </summary ...
- 浅析cookie
基本概念:cookie是指web浏览器存储的少量数据,该数据会在每次请求一个相关的URL时自动传到服务器中. 以博客园为例,我们看看cookie有哪些属性: 1.Name:cookie的名称: 2. ...
- Java-每日编程练习题③
一.计算圆周率 中国古代数学家研究出了计算圆周率最简单的办法: PI=4/1-4/3+4/5-4/7+4/9-4/11+4/13-4/15+4/17...... 这个算式的结果会无限接近于圆周率的值, ...
- shutil模块详解2
1.shutil.make_archive() 实际上是调用了两个模块来实现压缩打包的功能. zipfile和tarfile两个模块,shutil的两个封装的模块. zip是压缩文件,文件内存会变小, ...
- Xilinx HLS
Xilinx 的高层次综合(High Level Synthesis, HLS)技术是将C/C++/SystemC软件语言转换成Verilog或VHDL硬件描述语言的技术.现已应用在SDAccel,S ...
- 【HEVC帧间预测论文】P1.5 Fast Coding Unit Size Selection for HEVC based on Bayesian Decision Rule
Fast Coding Unit Size Selection for HEVC based on Bayesian Decision Rule <HEVC标准介绍.HEVC帧间预测论文笔记&g ...
- MongoDB最简单的入门教程之一 环境搭建
MongoDB是近年来非常流行的一个介于关系数据库和非关系数据库之间的解决方案,特别广泛地应用于国内很多互联网公司,是非关系数据库当中功能最丰富,最像关系数据库的. MongoDB支持的数据结构非常松 ...
- 监控java进程是否正常运行
@echo off set _task=java.exe :checkstart for /f "tokens=1" %%n in ('tasklist ^| find " ...