HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8970 Accepted Submission(s): 3175
Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
70.00
题解:
问题:给出n个点及其坐标,求一棵生成树,使得A/B最大,其中A为生成树中某一条边(我们称之为魔法边)两端点的value和,B为生成树中除了上述边之外的其他边的权值之和。
看到了比率,还有生成树,第一反应是最优比率生成树。但再想想,最优比率生成树每次找答案都需要重置边权,而且好像也不能选定一条边之类的功能。总之,行不通。后来换了个角度思考,就柳暗花明了:
1.假定魔法边就是 u--v ,由于val[u]和val[v]是确定的,所以A/B中的A就已经确定了,为了使得A/B最大,我们要做的就是使得B最小,即使得除了魔法边之外的其他生成树边的权值和最小。所以我们就需要求出最小生成树。然后我们把u到v路径上边权最大的边删掉,然后用魔法边把u和v直接相连(两个操作之后仍然构成生成树)。这样,我们就求出了除了魔法边之外的其他生成树边的最小权值和。
2.有了上述结论,我们就可以用类似求次小生成树的方法,求出魔法边和A/B的最大值了。
代码如下:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e3+; double cost[MAXN][MAXN], lowc[MAXN], Max[MAXN][MAXN];
bool vis[MAXN], used[MAXN][MAXN];
int x[MAXN], y[MAXN], val[MAXN], pre[MAXN]; double Prim(int st, int n)
{
double ret = ;
memset(vis, false, sizeof(vis));
memset(used, false, sizeof(used));
memset(Max, , sizeof(Max)); for(int i = ; i<=n; i++)
lowc[i] = (i==st)?:INF;
pre[st] = st; for(int i = ; i<=n; i++)
{
int k;
double minn = INF;
for(int j = ; j<=n; j++)
if(!vis[j] && minn>lowc[j])
minn = lowc[k=j]; ret += lowc[k];
vis[k] = true;
used[pre[k]][k] = used[k][pre[k]] = true;
for(int j = ; j<=n; j++)
{
if(vis[j] && j!=k)
Max[j][k] = Max[k][j] = max(Max[j][pre[k]], lowc[k]);
if(!vis[j] && lowc[j]>cost[k][j])
{
lowc[j] = cost[k][j];
pre[j] = k;
}
}
}
return ret;
} double SMST(double sum, int n)
{
double ret = ;
for(int i = ; i<=n; i++)
for(int j = i+; j<=n; j++)
ret = max(ret, (val[i]+val[j])/(sum-Max[i][j]));
return ret;
} int main()
{
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d",&n);
for(int i = ; i<=n; i++)
scanf("%d%d%d", &x[i], &y[i], &val[i]); for(int i = ; i<=n; i++)
for(int j = ; j<=n; j++)
cost[i][j] = sqrt( 1.0*(x[i]-x[j])*(x[i]-x[j])+1.0*(y[i]-y[j])*(y[i]-y[j]) ); double sum = Prim(, n);
double ans = SMST(sum, n);
printf("%.2f\n", ans);
}
}
HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形的更多相关文章
- hdu4081 Qin Shi Huang's National Road System 次小生成树
先发发牢骚:图论500题上说这题是最小生成树+DFS,网上搜题解也有人这么做.但是其实就是次小生成树.次小生成树完全当模版题.其中有一个小细节没注意,导致我几个小时一直在找错.有了模版要会用模版,然后 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
- HDU4081 Qin Shi Huang's National Road System 2017-05-10 23:16 41人阅读 评论(0) 收藏
Qin Shi Huang's National Road System ...
- HDU4081:Qin Shi Huang's National Road System (任意两点间的最小瓶颈路)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu-4081 Qin Shi Huang's National Road System(最小生成树+bfs)
题目链接: Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- HDU4081 Qin Shi Huang's National Road System(次小生成树)
枚举作为magic road的边,然后求出A/B. A/B得在大概O(1)的时间复杂度求出,关键是B,B是包含magic road的最小生成树. 这么求得: 先在原图求MST,边总和记为s,顺便求出M ...
- HDU4081 Qin Shi Huang's National Road System
先求最小生成树 再遍历每一对顶点,如果该顶点之间的边属于最小生成树,则剪掉这对顶点在最小生成树里的最长路径 否则直接剪掉连接这对顶点的边~ 用prim算法求最小生成树最长路径的模板~ #include ...
随机推荐
- ES6(函数新增特性)
ES6(函数新增特性) 1.函数参数默认值 没有 y 时,默认就是world 有 y 时,输出值即可 (错误) (C有默认值,正确) 默认值后面不能再有没有默认值的变量 2.作用域 y 取其前面的 x ...
- 关联及web_reg_save_param
一.什么是关联 关联(correlation):脚本回放过程中,客户端发出请求,通过关联函数所定义的左右边界值(也就是关联规则),在服务器所响应的内容中查 找,得到相应的值,已变量的形式替换录制时的静 ...
- 【数学】codeforces B. The Golden Age
http://codeforces.com/contest/813/problem/B [题意] 满足n=x^a+y^b的数字为不幸运数字,a,b都是非负整数: 求闭区间[l,r]上的最长的连续幸运数 ...
- android中的OnClickListener两种实现方式
android的activity点击事件中,通过OnClickListener来实现,要实现点击事件有两种方式 1.通过定义一个OnClickListener的内部类来实现 The example b ...
- ThinkPHP5 的入门学习
与Tp3.2相比,有一下的不同: (1)目录名称的改变: tp3.2的目录命名首字母皆为大写,例如:Application.Public.Controller.Model.View.ThinkPHP. ...
- for-else和wihle-else组合用法
当for和else组合一起使用的时候,for循环正常执行完毕,会执行else语句,否则,不会执行else语句 for i in range(10): if i == 2: break else: pr ...
- 为什么zookeeper的节点配置的个数必须是奇数个?
zookeeper有这样一个特性:集群中只要有过半的机器是正常工作的,那么整个集群对外就是可用的.也就是说如果有2个zookeeper,那么只要有1个死了zookeeper就不能用了,因为1没有过半, ...
- list如何remove
http://blog.sina.com.cn/s/blog_621b6f0e0100s5n5.html 在java中对list进行操作很频繁,特别是进行list启遍历,这些操作我们都会,也很熟悉,但 ...
- tomcat配置访问项目时不需要加项目名称
原文:http://blog.csdn.net/coolcoffee168/article/details/52582770 java web部署后,访问项目的时候,需要在地址中添加项目名称,那么如何 ...
- Spring Security教程(5)---- 国际化配置及UserCache
这一章是为了给后面的讲解打基础的,主要介绍下国际化的配置及UserCache的配置及使用 国际化配置 <!-- 定义上下文返回的消息的国际化 --> <bean id="m ...