传送门

Description

​ 给你前alphabet个小写字母组成的字符集, 以及n个单词, 定义一个串s的禁忌值为 \(\sum_{i } [s[i] == Taboo[i]]\) , Taboo[i]为第i个单词,现在给定一个长度len,求随机一个用字符集生成的len长度的串的禁忌值的期望.

Solution

​ 听说出题人卡double的精度,所以只能用long double

​ 考虑一个当串给定时如何求禁忌值, 我们将所有单词投影到数轴上, 这就变成一个贪心, 即取尽量多的线段, 使他们互不相交. 因此我们只要建立一个AC自动机, 然后在自动机上走,碰到一个单词节点就返回根节点,并且ANS++,就可以模拟贪心的过程.(因为我们贪心是按照左端点排序,所以先在AC自动机里匹配的一定是左端点靠前的串).

​ 考虑一个经典问题:给定一个图,求从u到v刚好经过m条边的路径条数.(n <= 100, m <= 1e9)

​ 结论:只要把邻接矩阵处理出来,然后求它的n次方后的矩阵中, \(a[u][v]\)的值.

​ 证明:考虑只经过一条边, 那么直接输出\(a[u][v]\)即可,在两条边的情况中,有 \(ans = \sum_{i = 1}^{n} a[u][i] * a[i][v]\)

只要枚举u到v的中转点,然后计算即可. 可以发现这正好是矩阵乘法的定义. 那么求邻接矩阵的k次幂就是两点k步的路径条数.

​ 所以用\(a[u][v]\)设为u一步到v的期望, 那么邻接矩阵自乘k次后也就是u到v走k步的期望值.

​ 我们把AC自动机建出来,并设定一个终点,然后每走到一个节点就设定当前节点到它所有儿子的一步期望为\(1.0/alphabet\), 走到一个标有单词的节点.我们就设定它到根节点与终点的一步期望为\(1.0/alphabet\),然后矩阵乘法即可.

​ 要注意AC自动机上如果一个节点的fail节点是单词节点,那么他本身也是单词节点.

​ 这样我们就不用跳出一个点的子树, 并且也不会给fail的子树加期望加重复.

Codes

#include<bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define drep(i, a, b) for(int i = (a), i##_end_ = (b); i >= i##_end_; --i)
#define clar(a, b) memset((a), (b), sizeof(a))
typedef long long LL;
typedef long double LD;
int read() {
int x = 0, flag = 1;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') flag *= -1;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - 48;
ch = getchar();
}
return x * flag;
}
void write(LL a) {
if(a >= 10) write(a / 10);
putchar(a % 10 + '0');
} #define Maxn 6
#define Maxc 109
struct matrix {
LD data[Maxc][Maxc];
matrix operator * (const matrix b) const {
matrix c;
rep(i, 0, Maxc - 1)
rep(j, 0, Maxc - 1) {
c.data[i][j] = 0;
rep(k, 0, Maxc - 1)
c.data[i][j] += (*this).data[i][k] * b.data[k][j];
}
return c;
}
matrix operator ^ (int times) const {
matrix res, base = (*this);
rep(i, 0, Maxc - 1)
rep(j, 0, Maxc - 1) res.data[i][j] = (i == j);
while(times) {
if(times & 1) res = res * base;
base = base * base;
times >>= 1;
}
return res;
}
}a, b;
#define Maxl ((Maxn) * 16 * 1009)
int vis[Maxl];
int n, len, alphabet;
namespace AC_DFA {
int v[Maxl], t[Maxl][26], cnt = 1, fail[Maxl];
void insert(char str[]) {
int len = strlen(str), cpos = 1;
rep(i, 0, len - 1) {
int id = str[i] - 'a';
if(!t[cpos][id]) t[cpos][id] = ++cnt;
cpos = t[cpos][id];
}
v[cpos] = 1;
}
queue <int> q;
void get_fail() {
q.push(1);
while(!q.empty()) {
int u = q.front(); q.pop();
v[u] |= v[fail[u]];
int pos;
rep(i, 0, alphabet - 1) {
pos = fail[u];
while(pos && !t[pos][i]) pos = fail[pos];
if(t[u][i]) {
fail[t[u][i]] = pos ? t[pos][i] : 1;
q.push(t[u][i]);
}else t[u][i] = pos ? t[pos][i] : 1;
}
}
}
void make_InitalMatrix() {
while(!q.empty()) q.pop();
q.push(1), vis[1] = 1;
while(!q.empty()) {
int u = q.front(); q.pop();
rep(i, 0, alphabet - 1) {
if(!vis[t[u][i]]) vis[t[u][i]] = 1, q.push(t[u][i]);
if(v[t[u][i]]) {
a.data[u][cnt + 1] += (LD)1.0 / alphabet;
a.data[u][1] += (LD)1.0 / alphabet;
} else a.data[u][t[u][i]] += (LD)1.0 / alphabet;
}
}
a.data[cnt + 1][cnt + 1] = 1;
}
};
char s[Maxn][16];
int main() {
n = read(), len = read(), alphabet = read();
rep(i, 1, n) scanf("%s", s[i]), AC_DFA :: insert(s[i]);
AC_DFA :: get_fail();
AC_DFA :: make_InitalMatrix();
b = a ^ len;
printf("%.6Lf\n", b.data[1][AC_DFA :: cnt + 1]);
return 0;
}

BZOJ2553 [BJWC2011]禁忌的更多相关文章

  1. BZOJ2553 [BeiJing2011]禁忌 AC自动机 矩阵

    原文链接http://www.cnblogs.com/zhouzhendong/p/8196279.html 题目传送门 - BZOJ2553 题意概括 引用一下lych大佬的: 在字母只有前alph ...

  2. BZOJ2553: [BeiJing2011]禁忌

    2553: [BeiJing2011]禁忌 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 203  Solved: ...

  3. BZOJ2553[BeiJing2011]禁忌——AC自动机+概率DP+矩阵乘法

    题目描述 Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平.而后,Koishi恢复了读心的能力…… 如今,在John已经成为传 ...

  4. BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)

    考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...

  5. BZOJ2553 [BeiJing2011]禁忌 【AC自动机 + dp + 矩乘优化】

    题目链接 BZOJ2553 题解 话说在前,此题卡精度,最好开long double 先建\(AC\)自动机 求期望,逆着求,设\(f[i][j]\)为长度为\(i\)的串,当前匹配AC自动机\(j\ ...

  6. [BZOJ2553][BeiJing2011]禁忌 dp+AC自动机+矩阵快速幂

    2553: [BeiJing2011]禁忌 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1206  Solved ...

  7. 题解 洛谷 P4569 【[BJWC2011]禁忌】

    考虑用\(AC\)自动机来解决本题这样的多字符串匹配问题. 要最大化魔法分割后得到的禁忌串数目,最优情况肯定为在一个串中每个禁忌串的右端点进行分割.对应到\(AC\)自动机上,就是匹配到一个禁忌串后, ...

  8. BJWC2011 禁忌

    题目链接 题解 多模式匹配首先建 AC 自动机,看到 \(len \le 10^9\) 想到矩阵乘法优化. 朴素 DP 关于分割的最大值,可以贪心,只要走到一个能匹配串的点立刻返回根继续匹配就行,一定 ...

  9. [BJWC2011]禁忌 AC 自动机 概率与期望

    #include<cstdio> #include<algorithm> #include<cstring> #include<string> #inc ...

随机推荐

  1. 搭建网络svn实战

    工作中的问题(7) 转自:http://blog.csdn.net/xiaoting451292510/article/details/8562570 经常性我们和朋友写一些程序,大家在不同的城市确有 ...

  2. 学习Centos 7的笔记

    Step-1 yum install epel-release && yum clean all && yum update –y &&  yum -y ...

  3. Android中AsyncTask使用具体解释

    在Android中我们能够通过Thread+Handler实现多线程通信.一种经典的使用场景是:在新线程中进行耗时操作.当任务完毕后通过Handler向主线程发送Message.这样主线程的Handl ...

  4. js实现动态删除表格的行或者列-------Day57

    昨天记录了动态加入表格的一行,当然这个一行是指一行数据,也就是说一行多少列也是加上的,而且第几列的内容都能够加入上,先来回想下它的实现的关键点: 1.var row=table.insertRow() ...

  5. 一天教你入门struts2

    写在前面 自己也是一个java和java web的菜鸟.之前没有接触过java web方面的开发 想通过一个小项目,来熟悉struts2的开发流程 一个有趣的想法源于教研室项目上的一个功能实现–自己主 ...

  6. Prime Distance(二次筛素数)

    Description The branch of mathematics called number theory is about properties of numbers. One of th ...

  7. Linux经常使用命令(更新中)

    文件类: 1.创建目录:mkdir 例:sudo mkdir test 2.创建空文件:touch 例:sudo touch test.txt 3.删除文件:rm 删除文件不须要确认:rm -f 例: ...

  8. 使用Java对100以内偶数求和

    /** * 根据for循环的描述: for(变量初始化:循环条件:修改循环变量的值),求出100以内的所有偶数,for(int i = 0; i<=100; i+=2),把这些偶数累加到一个空的 ...

  9. git pull ,git fetch ,git merge

    git pull 是git fetch与git merge的组合. 有时候拆开使用,会更加的安全. 比如想比较,本地分支,与线上分支的差别,就可以先 git fetch 这样就可以,git diff ...

  10. 网站图片增强JS插件2.0(兼容IE&FF)

    网站图片增强JS插件2.0简单介绍:插件可以增强网站互动能力与外链建设,用户在欣赏图片的同时,把看好的图片直接制作成自己喜欢的样式后通过QQ等传播,增强外链建设,通过用户互动创造外链.(支持:放大缩小 ...