svm、logistic regression对比
相同点:都是线性分类算法
不同点:
1、损失函数不同
LR:基于“给定x和参数,y服从二项分布”的假设,由极大似然估计推导
SVM: hinge loss + L2 regularization的标准表示,基于几何间隔最大化原理推导
$\sum^N_{i=1}[1 - y_i(w*x_i + b)]_+ + \lambda ||w||^2$
w*x可以看做是函数距离,当||w||=1时,w*x就是几何距离,即样本点到分类平面的距离,Sigmoid函数是有上下界的,而w*x的范围是(负无穷,正无穷),也就是说随着自变量(的绝对值)的增加,Sigmoid函数的值越来越接近上下界,不能同等程度地反映自变量的变化幅度
2、支持向量机只考虑局部的间隔边界附近的点,而逻辑回归考虑全局(远离的点对边界线的确定也起作用)。支持向量机改变非支持向量样本并不会引起分离超平面的变化
3、SVM的损失函数自带正则(损失函数中的1/2||w||^2项),这就是为什么SVM是结构风险最小化算法的原因!!!而LR必须另外在损失函数上添加正则项!!!结构风险最小化,意思就是在训练误差和模型复杂度之间寻求平衡,防止过拟合。
4、优化方法:LR一般基于梯度下降法, SVM基于SMO
5、对于非线性可分问题,SVM的扩展性比LR强
如何选择两个模型?
假设: n = 特征数量,m = 训练样本数量
1)如果n相对于m更大,比如 n = 10,000,m = 1,000,则使用lr
理由:特征数相对于训练样本数已经够大了,使用线性模型就能取得不错的效果,不需要过于复杂的模型;
2)如果n较小,m比较大,比如n = 10,m = 10,000,则使用SVM(高斯核函数)
理由:在训练样本数量足够大而特征数较小的情况下,可以通过使用复杂核函数的SVM来获得更好的预测性能,而且因为训练样本数量并没有达到百万级,使用复杂核函数的SVM也不会导致运算过慢;
3)如果n较小,m非常大,比如n = 100, m = 500,000,则应该引入/创造更多的特征,然后使用lr或者线性核函数的SVM
理由:因为训练样本数量特别大,使用复杂核函数的SVM会导致运算很慢,因此应该考虑通过引入更多特征,然后使用线性核函数的SVM或者lr来构建预测性更好的模型。
svm、logistic regression对比的更多相关文章
- logistic regression与SVM
Logistic模型和SVM都是用于二分类,现在大概说一下两者的区别 ① 寻找最优超平面的方法不同 形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只 ...
- Logistic Regression vs Decision Trees vs SVM: Part II
This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees ...
- Logistic Regression Vs Decision Trees Vs SVM: Part I
Classification is one of the major problems that we solve while working on standard business problem ...
- Probabilistic SVM 与 Kernel Logistic Regression(KLR)
本篇讲的是SVM与logistic regression的关系. (一) SVM算法概论 首先我们从头梳理一下SVM(一般情况下,SVM指的是soft-margin SVM)这个算法. 这个算法要实现 ...
- logistic regression svm hinge loss
二类分类器svm 的loss function 是 hinge loss:L(y)=max(0,1-t*y),t=+1 or -1,是标签属性. 对线性svm,y=w*x+b,其中w为权重,b为偏置项 ...
- SVM: 相对于logistic regression而言SVM的 cost function与hypothesis
很多学习算法的性能都差不多,关键不是使用哪种学习算法,而是你能得到多少数据量和应用这些学习算法的技巧(如选择什么特征向量,如何选择正则化参数等) SVM在解决非线性问题上提供了强大的方法. logis ...
- Coursera台大机器学习技法课程笔记05-Kernel Logistic Regression
这一节主要讲的是如何将Kernel trick 用到 logistic regression上. 从另一个角度来看soft-margin SVM,将其与 logistic regression进行对比 ...
- 逻辑回归Logistic Regression 之基础知识准备
0. 前言 这学期 Pattern Recognition 课程的 project 之一是手写数字识别,之二是做一个网站验证码的识别(鸭梨不小哇).面包要一口一口吃,先尝试把模式识别的经典问题—— ...
- 通俗地说逻辑回归【Logistic regression】算法(二)sklearn逻辑回归实战
前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklear ...
随机推荐
- (55)zabbix模板嵌套
在zabbix使用过程中,在某些情况下,一个host需要link多个模板.这么做显得比较麻烦,很容易忘记到底要link哪些模板,我想link一个模板就达成这个目标,行不行?然没问题,zabbix模板内 ...
- 如何用纯 CSS 绘制一个充满动感的 Vue logo
效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/zaqKPx 可交互视频教 ...
- systemverilog(3)之Randomize
what to randomize? (1) primary input data <==one data (2)encapsulated input data <== muti grou ...
- opencv中ptr的使用
#include <QCoreApplication> #include<stdio.h> #include<opencv2/highgui/highgui.hpp> ...
- C#学习基础概念二十五问
C#学习基础概念二十五问 1.静态变量和非静态变量的区别?2.const 和 static readonly 区别?3.extern 是什么意思?4.abstract 是什么意思?5.internal ...
- HDU 5483 Nux Walpurgis
Nux Walpurgis Time Limit: 8000ms Memory Limit: 131072KB This problem will be judged on HDU. Original ...
- 2013 年 acm 长春现场赛
A - Hard Code Hdu 4813 题目大意:给你一坨字符串,让你输出其栅栏密码的解码形式 思路:水题模拟 #include<iostream> #include<cstd ...
- BZOJ 3856: Monster【杂题】
Description Teacher Mai has a kingdom. A monster has invaded this kingdom, and Teacher Mai wants to ...
- P2015 二叉苹果树 (树形动规)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- ReSharper7.1.25.234 注册机
经常用vs做开发的人都知道,ReSharper是vistual studio必备插件之一.他的智能提示,智能感知,.net底层方法查看,测试等都非常方便,给程序员带来了巨大的效率. 但众所周知ReSh ...