最长递增子序列(Longest Increase Subsequence)
问题
给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱)。例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8},长度为4.
解决方案:
1,新建一个二维数组ret[ ][ ];以数组A[ ]= {2 , 1 , 5 , 9}为例:
~ 2 1 5 9
0 0 0 0 0 0 //为了方便计算,第0行第0列均设为0
1 0 2 1 1 1
2 0 E 5 5 //第2行表示子串长度为2,该位置及前面元素的长度为2的最长递增子序列
3 0 E 9 //E表示该位置往前都没有产度为3的递增子序列
4 0 E
原理是:
1.长度为k的子串是否是递增子串与长度为k-1的子串是否是递增子串有关;
2.ret[2][3]=5
2表示:行号为2表示子串长度为2;
3表示:位于第3列的数字5=A[2];
5表示:位于第3列的数字5和其前面的各数,如果能组成长度为2的递增子序列,则在该位写 min(所有可行序列的最大值)比如 123 和 125两个序列最大值分别为3和5,写入3;如 果不能组成长度为2的递增序列,则写入ret[i][j]左侧数字,如果左侧为0或E则输入E;
3.如果第k行全都是E,表示改行起没有满足条件的递增子序列,则k-1为最长递增子序列的长度;
#include<stdlib.h>
#include<stdio.h>
#define MAX 100 int ret[MAX][MAX]={{}};
int FUN(int inp[],int len){
int i=;//第0行全0
int maxlen=;
int ERROR=0xfff;
int isfinished;
for(;i<=len;i++){
int j=i;
for(;j<=len;j++){
isfinished=;//结束标志位
if(ret[i-][j-] != ERROR){
if(inp[j-]>ret[i-][j-]) ret[i][j]=inp[j-];
else{
ret[i][j]=ERROR;
}
}//与左上角数比较,大于填inp,小于时不能组成递增序列填ERROR
else ret[i][j] = ERROR;//左上角数为ERROR时不可组成递增序列
if(ret[i][j-] !=ERROR && ret[i][j-] != ){
if(ret[i][j-]<ret[i][j]) ret[i][j]=ret[i][j-];
}//左侧数不为0或ERROR时,填入左侧数和该数较小者
printf("ret[%d][%d]=%d\n",i,j,ret[i][j]);
if(ret[i][j] != ERROR) isfinished = ;//如果还非ERROR数字表示未结束
}
if(isfinished == ){//结束后保存结束时数组行数
maxlen = i-;
break;
}
}
return maxlen;
} int main(){
int input[]={,,,,,,,};
int result = FUN(input, sizeof(input)/sizeof(int));
printf("result is:%d\n",result);
return ;
}
输出结果:
xu@xu-ThinkPad-X61:~/algorithm$ gcc maxascent1.c
xu@xu-ThinkPad-X61:~/algorithm$ ./a.out
ret[1][1]=5
ret[1][2]=5
ret[1][3]=5
ret[1][4]=1
ret[1][5]=1
ret[1][6]=1
ret[1][7]=1
ret[1][8]=1
ret[2][2]=6
ret[2][3]=6
ret[2][4]=6
ret[2][5]=2
ret[2][6]=2
ret[2][7]=2
ret[2][8]=2
ret[3][3]=7
ret[3][4]=7
ret[3][5]=7
ret[3][6]=7
ret[3][7]=3
ret[3][8]=3
ret[4][4]=4095
ret[4][5]=4095
ret[4][6]=8
ret[4][7]=8
ret[4][8]=4
ret[5][5]=4095
ret[5][6]=4095
ret[5][7]=4095
ret[5][8]=4095
result is:4
希特,差点绕进去了!!
最长递增子序列(Longest Increase Subsequence)的更多相关文章
- 最长递增子序列(Longest increasing subsequence)
问题定义: 给定一个长度为N的数组A,找出一个最长的单调递增子序列(不要求连续). 这道题共3种解法. 1. 动态规划 动态规划的核心是状态的定义和状态转移方程.定义lis(i),表示前i个数中以A[ ...
- 【转】动态规划:最长递增子序列Longest Increasing Subsequence
转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...
- 算法实践--最长递增子序列(Longest Increasing Subsquence)
什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5 ...
- 300最长上升子序列 · Longest Increasing Subsequence
[抄题]: 往上走台阶 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的. 样例 给出 [5,4,1,2,3],LIS 是 [1,2 ...
- [Swift]LeetCode300. 最长上升子序列 | Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- [Swift]LeetCode594. 最长和谐子序列 | Longest Harmonious Subsequence
We define a harmonious array is an array where the difference between its maximum value and its mini ...
- nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)
最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n). 具体分析参考:http://b ...
- 动态规划--最长上升子序列(Longest increasing subsequence)
前面写了最长公共子序列的问题.然后再加上自身对动态规划的理解,真到简单的DP问题很快就解决了.其实只要理解了动态规划的本质,那么再有针对性的去做这方的题目,思路很快就会有了.不错不错~加油 题目描述: ...
- 最长公共子序列(Longest common subsequence)
问题描述: 给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子序列.(子序列中的字符不要求连续) 这道题可以 ...
随机推荐
- Visio Premium 2010钥匙+激活破解方法
Visio Premium 2010钥匙+激活破解方法: 安装时能够使用的关键: GR24B-GC2XY-KRXRG-2TRJJ-4X7DC VWQ6G-37WBG-J7DJP-CY66Y-V278X ...
- maven+hudson构建集成测试平台
1.下载hudson.war.2.命令行运行:java -jar hudson.war --httpPort=8070 -Dorg.eclipse.jetty.util.URI.charset=GB ...
- 【百度地图API】今日小年大进步,齐头共进贺佳节——API优化升级上线,不再增加内存消耗
原文:[百度地图API]今日小年大进步,齐头共进贺佳节--API优化升级上线,不再增加内存消耗 任务描述: 今天是2011年01月26日,小年夜.百度地图API在小年夜献给广大API爱好者一份给力的礼 ...
- cfs
转自:http://www.cnblogs.com/openix/p/3254394.html 下文中对于红黑树或链表组织的就绪队列,统称为用队列组织的就绪队列. ...
- c语言中实现从0-1的随机数输出
原文:c语言中实现从0-1的随机数输出 今天晚上同学问了一个巨简单的问题,问我怎么用c语言输出0-1的随机数,可别说,一时之间还想不出来.在写的过程中发现,直接调用random函数还不能实现,用以下方 ...
- Android-Launcher开发之ShortCut(1)
下面源代码来自Launcher2.3的样例 1.默认每一个应用的主Activity都会自带 <category android:name="android.intent.categor ...
- Web Service学习笔记:动态调用WebService
原文:Web Service学习笔记:动态调用WebService 多数时候我们通过 "添加 Web 引用..." 创建客户端代理类的方式调用WebService,但在某些情况下我 ...
- EasyMonkeyDevice vs MonkeyDevice&HierarchyViewer API Mapping Matrix
1. 前言 本来这次文章的title是写成和前几篇类似的<EasyMonkeyDevice API实践全记录>,内容也打算把每个API的实践和建议给记录下来,但后来想了下觉得这样子并不是最 ...
- MonkeyImage API 实践全记录
1. 背景 鉴于网上使用MonkeyImage的实例除了方法sameAs外很难找到,所以本人把实践各个API的过程记录下来然自己有更感性的认识,也为往后的工作打下更好的基础.同时也和上一篇文章& ...
- Ajax.ActionLink 用法
Ajax.ActionLink 用法 Ajax 属性的ActionLink方法可以创建一个具有异步行为的锚标签. ActionLink方法的第一个参数指定了链接文本,第二个参数是要异步调用的操作的名称 ...