Unidirectional TSP 

Background

Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.

This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

The Problem

Given an  matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

For example, two slightly different  matrices are shown below (the only difference is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

The Input

The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by  integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.

The Output

Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

Sample Input

5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10

Sample Output

1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19

题意:给定一个矩阵。求出从左到右权值和最小的路径,每次有3种方式,且可以跨边界。如图,

思路:dp,数塔问题的变形。。只要注意保存下输出路径要按字典序,所以要从右往左储存。

代码:

#include <stdio.h>
#include <string.h> int n, m, map[105][105], i, j, ans, out[105][105], outi;
int min(int a, int b) {
return a < b ? a : b;
}
int main() {
while (~scanf("%d%d", &n, &m)) {
ans = 999999999; outi = 0;
memset(out, -1, sizeof(out));
for (i = 0; i < n; i ++)
for (j = 0; j < m; j ++) {
scanf("%d", &map[i][j]);
}
for (j = m - 2; j >= 0; j --) {
for (i = 0; i < n; i ++) {
int a, b, c, ai, bi, ci;
if (i == 0) {
a = map[n - 1][j + 1];
ai = n - 1;
}
else {
a = map[i - 1][j + 1];
ai = i - 1;
}
b = map[i][j + 1];
bi = i;
if (i == n - 1) {
c = map[0][j + 1];
ci = 0;
}
else {
c = map[i + 1][j + 1];
ci = i + 1;
}
if (map[i][j] + a <= map[i][j] + b && map[i][j] + a <= map[i][j] + c) {
map[i][j] += a;
out[i][j] = ai;
if (map[i][j] + a == map[i][j] + b) {
out[i][j] = min(min(ai, bi), out[i][j]);
}
if (map[i][j] + a == map[i][j] + c) {
out[i][j] = min(min(ai, ci), out[i][j]);
}
}
else if (map[i][j] + b <= map[i][j] + a && map[i][j] + b <= map[i][j] + c) {
map[i][j] += b;
out[i][j] = bi;
if (map[i][j] + a == map[i][j] + b) {
out[i][j] = min(min(ai, bi), out[i][j]);
}
if (map[i][j] + b == map[i][j] + c) {
out[i][j] = min(min(bi, ci), out[i][j]);
}
}
else if (map[i][j] + c <= map[i][j] + b && map[i][j] + c <= map[i][j] + a) {
map[i][j] += c;
out[i][j] = ci;
if (map[i][j] + a == map[i][j] + c) {
out[i][j] = min(min(ai, ci), out[i][j]);
}
if (map[i][j] + b == map[i][j] + c) {
out[i][j] = min(min(bi, ci), out[i][j]);
}
}
}
}
for (i = 0; i < n; i ++) {
if (ans > map[i][0]) {
ans = map[i][0];
outi = i;
}
}
int sb = 0;
printf("%d", outi + 1);
while (out[outi][sb] != -1) {
printf(" %d", out[outi][sb] + 1);
outi = out[outi][sb];
sb ++;
}
printf("\n");
printf("%d\n", ans);
}
return 0;
}

UVA 116 Unidirectional TSP(dp + 数塔问题)的更多相关文章

  1. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  2. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  3. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  4. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  5. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  6. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  7. UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)

    题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...

  8. UVa - 116 - Unidirectional TSP

    Background Problems that require minimum paths through some domain appear in many different areas of ...

  9. uva 116 - Unidirectional TSP (动态规划)

    第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...

随机推荐

  1. IOS开发中UIBarButtonItem上按钮切换或隐藏实现案例

    IOS开发中UIBarButtonItem上按钮切换或隐藏案例实现案例是本文要介绍的内容,这个代码例子的背景是:导航条右侧有个 edit button,左侧是 back button 和 add bu ...

  2. HTML5 上播放视频格式兼容性

    视频格式 当前,video 元素支持三种视频格式: 格式 IE Firefox Opera Chrome Safari Ogg No 3.5+ 10.5+ 5.0+ No MPEG 4 9.0+ No ...

  3. javascript每日一练(九)——运动一:匀速运动

    一.js的运动 匀速运动 清除定时器 开启定时器 运动是否完成:a.运动完成,清除定时器:b.运动未完成继续 匀速运动停止条件:距离足够近  Math.abs(当然距离-目标距离) < 最小运动 ...

  4. 演练5-8:Contoso大学校园管理系统(实现存储池和工作单元模式)

    在上一次的教程中,你已经使用继承来消除在 Student 和 Instructor 实体之间的重复代码.在这个教程中,你将要看到使用存储池和工作单元模式进行增.删.改.查的一些方法.像前面的教程一样, ...

  5. Robot Framework与Web界面自动化测试学习笔记:如何判断单选框的选中状态

    单选按钮是个常见的html元素,在网页中往往提供一组单选按钮来做选项. 这样在自动化测试用例中需要判断当前选中的按钮是否与预期的一直. 可以这样来操作: ${value}    Get Element ...

  6. C#的静态构造函数

    “静态构造函数”典型应用于第一次使用类时的初始化工作,注意“第一次”,意思是它只执行一次. 有同学说了,类的初始化不是有构造函数嘛?我们回答:构造函数是每个实例被声明时都会执行的,它属于每一个实例,而 ...

  7. Delphi XE5 for Android(十一篇)

    http://www.cnblogs.com/ChinaEHR/category/521326.html http://blog.csdn.net/laorenshen

  8. 用DELPHI的RTTI实现数据集的简单对象化

    在<强大的DELPHI RTTI--兼谈需要了解多种开发语言>一文中,我说了一下我用DELPHI的RTTI实现了数据集的简单对象化.本文将详细介绍一下我的实现方法.     首先从一个简单 ...

  9. 1.1.6-学习Opencv与MFC混合编程之---播放WAV音乐和 alpha融合功能

    源代码:http://download.csdn.net/detail/nuptboyzhb/3961698 Alpha融合菜单项 1.      增加alpha融合菜单项,修改相应的属性,建立类向导 ...

  10. ORACLE DATABASE 10G FALSHBACK 知识整理

    1.知识储备 1)    当出现介质损坏时(如数据文件丢失),任何闪回方法都毫无用处,只能执行标准的备份.还原与恢复. 2.SCN记录方法 SQL>variable x_scn number; ...