Unidirectional TSP 

Background

Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.

This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

The Problem

Given an  matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

For example, two slightly different  matrices are shown below (the only difference is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

The Input

The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by  integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.

The Output

Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

Sample Input

5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10

Sample Output

1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19

题意:给定一个矩阵。求出从左到右权值和最小的路径,每次有3种方式,且可以跨边界。如图,

思路:dp,数塔问题的变形。。只要注意保存下输出路径要按字典序,所以要从右往左储存。

代码:

#include <stdio.h>
#include <string.h> int n, m, map[105][105], i, j, ans, out[105][105], outi;
int min(int a, int b) {
return a < b ? a : b;
}
int main() {
while (~scanf("%d%d", &n, &m)) {
ans = 999999999; outi = 0;
memset(out, -1, sizeof(out));
for (i = 0; i < n; i ++)
for (j = 0; j < m; j ++) {
scanf("%d", &map[i][j]);
}
for (j = m - 2; j >= 0; j --) {
for (i = 0; i < n; i ++) {
int a, b, c, ai, bi, ci;
if (i == 0) {
a = map[n - 1][j + 1];
ai = n - 1;
}
else {
a = map[i - 1][j + 1];
ai = i - 1;
}
b = map[i][j + 1];
bi = i;
if (i == n - 1) {
c = map[0][j + 1];
ci = 0;
}
else {
c = map[i + 1][j + 1];
ci = i + 1;
}
if (map[i][j] + a <= map[i][j] + b && map[i][j] + a <= map[i][j] + c) {
map[i][j] += a;
out[i][j] = ai;
if (map[i][j] + a == map[i][j] + b) {
out[i][j] = min(min(ai, bi), out[i][j]);
}
if (map[i][j] + a == map[i][j] + c) {
out[i][j] = min(min(ai, ci), out[i][j]);
}
}
else if (map[i][j] + b <= map[i][j] + a && map[i][j] + b <= map[i][j] + c) {
map[i][j] += b;
out[i][j] = bi;
if (map[i][j] + a == map[i][j] + b) {
out[i][j] = min(min(ai, bi), out[i][j]);
}
if (map[i][j] + b == map[i][j] + c) {
out[i][j] = min(min(bi, ci), out[i][j]);
}
}
else if (map[i][j] + c <= map[i][j] + b && map[i][j] + c <= map[i][j] + a) {
map[i][j] += c;
out[i][j] = ci;
if (map[i][j] + a == map[i][j] + c) {
out[i][j] = min(min(ai, ci), out[i][j]);
}
if (map[i][j] + b == map[i][j] + c) {
out[i][j] = min(min(bi, ci), out[i][j]);
}
}
}
}
for (i = 0; i < n; i ++) {
if (ans > map[i][0]) {
ans = map[i][0];
outi = i;
}
}
int sb = 0;
printf("%d", outi + 1);
while (out[outi][sb] != -1) {
printf(" %d", out[outi][sb] + 1);
outi = out[outi][sb];
sb ++;
}
printf("\n");
printf("%d\n", ans);
}
return 0;
}

UVA 116 Unidirectional TSP(dp + 数塔问题)的更多相关文章

  1. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  2. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  3. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  4. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  5. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  6. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  7. UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)

    题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...

  8. UVa - 116 - Unidirectional TSP

    Background Problems that require minimum paths through some domain appear in many different areas of ...

  9. uva 116 - Unidirectional TSP (动态规划)

    第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...

随机推荐

  1. [Andriod官方API指南]连接之蓝牙

    Bluetooth —— 蓝牙 The Android platform includes support for the Bluetooth network stack, which allows ...

  2. Axis2(8):异步调用WebService

    在前面几篇文章中都是使用同步方式来调用WebService.也就是说,如果被调用的WebService方法长时间不返回,客户端将一直被阻塞,直到该方法返回为止.使用同步方法来调用WebService虽 ...

  3. ArrayList集合-[习题]--C#

    :向集合中添加10个元素,计算平均值,求最大.最小值. ; list.AddRange(, , , , , , , , }); int Max, Min; Max = Min = (]; ; i &l ...

  4. ACM比赛(进制转换)

    Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu Description 把十进制整数转换 ...

  5. Android--pendingIntent & Intent

    PendingIntent pendingIntent字面意义:等待的,未决定的Intent.要得到一个pendingIntent对象,使用方法类的静态方法 getActivity(Context, ...

  6. HDOJ 1598 Kruscal

    贪心思想的Kruscal:先对边排序,再从第一条边开始,一旦start point 和 end poiont 连上,就break #include <stdio.h> #include & ...

  7. X窗口系统名词解释

    前端时间Gentoo的桌面环境出了点问题,发现自己对Linux的桌面环境了解的很少,于是恶补了一下知识,以下名词解释基本上都是来自维基百科的条目和<Linux程序设计(第三版)>.一般而言 ...

  8. 文本导出到pdf文件(使用QPrinter和QPainter和QTextDocument)

    程序中数据导出是经常有的需求,今天学习把文本导出到pdf文件.主要是用QPrinter,QPainter TextEditToPdf::TextEditToPdf(QWidget *parent, Q ...

  9. 创建成功的Python项目

    创建成功的Python项目 前端开发工具技巧介绍—Sublime篇 SEO在网页制作中的应用 观察者模式 使用D3制作图表 英文原文:Create successful Python projects ...

  10. HDU 472 Hamming Distance (随机数)

    Hamming Distance Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) To ...