原文地址:http://blog.csdn.net/honglei915/article/details/37697655

Kafka Producer APIs

旧版的Procuder API有两种:kafka.producer.SyncProducer和kafka.producer.async.AsyncProducer.它们都实现了同一个接口:

class Producer {

  /* 将消息发送到指定分区 */
public void send(kafka.javaapi.producer.ProducerData<K,V> producerData); /* 批量发送一批消息 */
public void send(java.util.List<kafka.javaapi.producer.ProducerData<K,V>> producerData); /* 关闭producer */
public void close(); }

新版的Producer API提供了下面功能:

  1. 能够将多个消息缓存到本地队列里。然后异步的批量发送到broker,能够通过參数producer.type=async做到。缓存的大小能够通过一些參数指定:queue.timebatch.size。一个后台线程((kafka.producer.async.ProducerSendThread)从队列中取出数据并让kafka.producer.EventHandler将消息发送到broker,也能够通过參数event.handler定制handler。在producer端处理数据的不同的阶段注冊处理器,比方能够对这一过程进行日志追踪。或进行一些监控。仅仅需实现kafka.producer.async.CallbackHandler接口,并在callback.handler中配置。
  2. 自己编写Encoder来序列化消息,仅仅需实现以下这个接口。默认的Encoder是kafka.serializer.DefaultEncoder
    interface Encoder<T> {
    public Message toMessage(T data);
    }
  3. 提供了基于Zookeeper的broker自己主动感知能力,能够通过參数zk.connect实现。假设不使用Zookeeper。也能够使用broker.list參数指定一个静态的brokers列表,这样消息将被随机的发送到一个broker上,一旦选中的broker失败了,消息发送也就失败了。

  4. 通过分区函数kafka.producer.Partitioner类对消息分区
    interface Partitioner<T> {
    int partition(T key, int numPartitions);
    }

    分区函数有两个參数:key和可用的分区数量。从分区列表中选择一个分区并返回id。默认的分区策略是hash(key)%numPartitions.假设key是null,就随机的选择一个。

    能够通过參数partitioner.class定制分区函数。

新的api完整实比例如以下:

import java.util.*;

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig; public class TestProducer {
public static void main(String[] args) {
long events = Long.parseLong(args[0]);
Random rnd = new Random(); Properties props = new Properties();
props.put("metadata.broker.list", "broker1:9092,broker2:9092 ");
props.put("serializer.class", "kafka.serializer.StringEncoder");
props.put("partitioner.class", "example.producer.SimplePartitioner");
props.put("request.required.acks", "1"); ProducerConfig config = new ProducerConfig(props); Producer<String, String> producer = new Producer<String, String>(config); for (long nEvents = 0; nEvents < events; nEvents++) {
long runtime = new Date().getTime();
String ip = “192.168.2.” + rnd.nextInt(255);
String msg = runtime + “,www.example.com,” + ip;
KeyedMessage<String, String> data = new KeyedMessage<String, String>("page_visits", ip, msg);
producer.send(data);
}
producer.close();
}
}

以下这个是用到的分区函数:

import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties; public class SimplePartitioner implements Partitioner<String> {
public SimplePartitioner (VerifiableProperties props) { } public int partition(String key, int a_numPartitions) {
int partition = 0;
int offset = key.lastIndexOf('.');
if (offset > 0) {
partition = Integer.parseInt( key.substring(offset+1)) % a_numPartitions;
}
return partition;
} }

KafKa Consumer APIs

Consumer API有两个级别。低级别的和一个指定的broker保持连接。并在接收完消息后关闭连接,这个级别是无状态的,每次读取消息都带着offset。

高级别的API隐藏了和brokers连接的细节,在不必关心服务端架构的情况下和服务端通信。还能够自己维护消费状态。并能够通过一些条件指定订阅特定的topic,比方白名单黑名单或者正則表達式。

低级别的API

class SimpleConsumer {

  /*向一个broker发送读取请求并得到消息集 */
public ByteBufferMessageSet fetch(FetchRequest request); /*向一个broker发送读取请求并得到一个对应集 */
public MultiFetchResponse multifetch(List<FetchRequest> fetches); /**
* 得到指定时间之前的offsets
* 返回值是offsets列表。以倒序排序
* @param time: 时间,毫秒,
* 假设指定为OffsetRequest$.MODULE$.LATIEST_TIME(), 得到最新的offset.
* 假设指定为OffsetRequest$.MODULE$.EARLIEST_TIME(),得到最老的offset.
*/
public long[] getOffsetsBefore(String topic, int partition, long time, int maxNumOffsets);
}

低级别的API是高级别API实现的基础,也是为了一些对维持消费状态有特殊需求的场景,比方Hadoop consumer这种离线consumer。

高级别的API

/* 创建连接 */
ConsumerConnector connector = Consumer.create(consumerConfig); interface ConsumerConnector { /**
* 这种方法能够得到一个流的列表。每一个流都是MessageAndMetadata的迭代,通过MessageAndMetadata能够拿到消息和其它的元数据(眼下之后topic)  
* Input: a map of <topic, #streams>
* Output: a map of <topic, list of message streams>
*/
public Map<String,List<KafkaStream>> createMessageStreams(Map<String,Int> topicCountMap); /**
* 你也能够得到一个流的列表,它包括了符合TopicFiler的消息的迭代,
* 一个TopicFilter是一个封装了白名单或黑名单的正則表達式。
*/
public List<KafkaStream> createMessageStreamsByFilter(
TopicFilter topicFilter, int numStreams); /* 提交眼下消费到的offset */
public commitOffsets() /* 关闭连接 */
public shutdown()
}

这个API环绕着由KafkaStream实现的迭代器展开,每一个流代表一系列从一个或多个分区多和broker上汇聚来的消息。每一个流由一个线程处理。所以client能够在创建的时候通过參数指定想要几个流。一个流是多个分区多个broker的合并。可是每一个分区的消息仅仅会流向一流。

每次通话createMessageStreams会consumer注册到topic上,此consumer和brokers负载平衡将之间调节。

API每次调用创建激励许多人topic流动,以减少这种调整。createMessageStreamsByFilter方法来注册监听器可以感知一个新雅阁filter的tipic。

漫游Kafka实战篇clientAPI的更多相关文章

  1. 漫游Kafka实战篇之客户端API

    Kafka Producer APIs 旧版的Procuder API有两种:kafka.producer.SyncProducer和kafka.producer.async.AsyncProduce ...

  2. 漫游kafka实战篇之搭建Kafka开发环境

    上篇文章中我们搭建了kafka的服务器,并可以使用Kafka的命令行工具创建topic,发送和接收消息.下面我们来搭建kafka的开发环境.   添加依赖   搭建开发环境需要引入kafka的jar包 ...

  3. 漫游Kafka实战篇之搭建Kafka运行环境

    接下来一步一步搭建Kafka运行环境. Step 1: 下载Kafka 点击下载最新的版本并解压. > tar -xzf kafka_2.9.2-0.8.1.1.tgz > cd kafk ...

  4. 漫游Kafka实战篇之搭建Kafka运行环境(2)

    接下来一步一步搭建Kafka运行环境. Step 1: 下载Kafka 点击下载最新的版本并解压. > tar -xzf kafka_2.9.2-0.8.1.1.tgz > cd kafk ...

  5. 漫游kafka实战篇之搭建Kafka开发环境(3)

    上篇文章中我们搭建了kafka的服务器,并可以使用Kafka的命令行工具创建topic,发送和接收消息.下面我们来搭建kafka的开发环境.   添加依赖   搭建开发环境需要引入kafka的jar包 ...

  6. 漫游Kafka设计篇之性能优化

    Kafka在提高效率方面做了很大努力.Kafka的一个主要使用场景是处理网站活动日志,吞吐量是非常大的,每个页面都会产生好多次写操作.读方面,假设每个消息只被消费一次,读的量的也是很大的,Kafka也 ...

  7. 漫游Kafka设计篇之性能优化(7)

    Kafka在提高效率方面做了很大努力.Kafka的一个主要使用场景是处理网站活动日志,吞吐量是非常大的,每个页面都会产生好多次写操作.读方面,假设每个消息只被消费一次,读的量的也是很大的,Kafka也 ...

  8. 漫游Kafka实现篇之消息和日志

    消息格式 消息由一个固定长度的头部和可变长度的字节数组组成.头部包含了一个版本号和CRC32校验码. /** * 具有N个字节的消息的格式如下 * * 如果版本号是0 * * 1. 1个字节的 &qu ...

  9. 漫游Kafka设计篇之主从同步

    Kafka允许topic的分区拥有若干副本,这个数量是可以配置的,你可以为每个topci配置副本的数量.Kafka会自动在每个个副本上备份数据,所以当一个节点down掉时数据依然是可用的. Kafka ...

随机推荐

  1. Enum变量值的Discretion

    有些时候,某个方法的返回值是个枚举类型,比如描述登录结果: public enum LoginResult { Success, WrongPassword, } 当前段UI获取到登陆方法的返回结果时 ...

  2. Blend4精选案例图解教程(二):找张图片玩特效

    原文:Blend4精选案例图解教程(二):找张图片玩特效 Blend中的特效给了我们在处理资源时更多的想象空间,合理地运用特效往往会得到梦幻般效果,本次教程展示对图片应用特效的常规操作,当然特效不仅限 ...

  3. RabbitMQ与java、Spring结合实例详细讲解(转)

    林炳文Evankaka原创作品.转载请注明出处http://blog.csdn.net/evankaka 摘要:本文介绍了rabbitMq,提供了如何在Ubuntu下安装RabbitMQ 服务的方法. ...

  4. JSP简单的练习-用户登记表

    <%@ page language="java" import="java.util.*" pageEncoding="gb2312" ...

  5. 在C#环境中动态调用IronPython脚本(二)

    一.Python数据类型与C#数据类型的对应 Python中数据类型中的简单类型,例如int,float,string可以对应到C#环境中的int32,double,string,这些对应比较直观,P ...

  6. poj 1962 Corporative Network

    主题链接:http://poj.org/problem?id=1962 思路:每一个集合中用根节点标记这个集合,每一个点到根节点的距离. code: <span style="font ...

  7. 如何与多个线程的操作epoll fd

    自己曾经做一个接口server时候,这样的场景下我的设计是多个线程操作同一个epoll fd.彼时,我的理由是epoll的系列函数是线程安全的. 当然有人不理解为什么会有多个线程操作同一个epoll ...

  8. UI标签库的话题:JEECG智能开发平台 BaseTag(样式表和JS标签的引入)

    UI标签库专题一:JEECG智能开发平台 BaseTag(样式表和JS引入标签) 1.BaseTag(样式表和JS引入标签) 1.1. 演示样例 <t:base type="jquer ...

  9. 【rman,1】经典案例增量备份

    一.备份策略: 1.星期天晚上      -level 0 backup performed(全备份) 2.星期一晚上      -level 2 backup performed 3.星期二晚上   ...

  10. HPUX在oracle10g安装和卸载缩写

    创作品,出自 "深蓝的blog" 博客,欢迎转载,转载时请务必注明出处.否则追究版权法律责任. 深蓝的blog:http://blog.csdn.net/huangyanlong/ ...