题目链接:HDU 1102 Constructing Roads

Constructing Roads

Problem Description
There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village
C such that there is a road between A and C, and C and B are connected. 



We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.
 
Input
The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village
i and village j.



Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.
 
Output
You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum. 
 
Sample Input
3
0 990 692
990 0 179
692 179 0
1
1 2
 
Sample Output
179
 
Source
 
Recommend
Eddy   |   We have carefully selected several similar problems for you:  1142 1598 1116 1269 1596 
 
题意

有N个村子要修道路,给出了修每条道路的原始费用,如今有的道路已经修好了。我们要求的是修剩下的道路的最小费用。

分析

最小生成树算法,由于是邻接矩阵,因而使用Prim方法很方便求解,对于已经修好的道路,我们能够将他们的费用设置为0,再用Prim算法求解就可以得到。

代码

邻接矩阵:
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std; #define maxn 110
#define INF 0xffff
int g[maxn][maxn];
int n; struct node
{
int v, key;
friend bool operator<(node a, node b)
{
return a.key > b.key;
}
}; bool visited[maxn];
node vx[maxn];
priority_queue<node> q;
void Prim()
{
for(int i = 1; i <= n; i++)
{
vx[i].v = i;
vx[i].key = INF;
visited[i] = false;
}
vx[1].key = 0;
q.push(vx[1]);
while(!q.empty())
{
node nd = q.top();
q.pop();
int st = nd.v;
if(visited[st])
continue;
visited[st] = true;
for(int j = 1; j <= n; j++)
{
if(j != st && !visited[j] && vx[j].key > g[st][j])
{
vx[j].key = g[st][j];
q.push(vx[j]);
}
}
}
}
int main()
{
int m, a, b;
while(~scanf("%d", &n))
{
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
scanf("%d", &g[i][j]);
g[i][i] = INF;
}
scanf("%d", &m);
while(m--)
{
scanf("%d%d", &a, &b);
g[a][b] = g[b][a] = 0;
}
Prim();
int ans = 0;
for(int i = 1; i <= n; i++)
ans += vx[i].key;
printf("%d\n", ans); }
return 0;
}

邻接表:

#include <iostream>
#include <cstdio>
#include <vector>
#include <queue>
using namespace std; #define maxn 110 //最大顶点个数
int n, m; //顶点数,边数 struct arcnode //边结点
{
int vertex; //与表头结点相邻的顶点编号
int weight; //连接两顶点的边的权值
arcnode * next; //指向下一相邻接点
arcnode() {}
arcnode(int v,int w):vertex(v),weight(w),next(NULL) {}
}; struct vernode //顶点结点,为每一条邻接表的表头结点
{
int vex; //当前定点编号
arcnode * firarc; //与该顶点相连的第一个顶点组成的边
}Ver[maxn]; void Init() //建立图的邻接表须要先初始化,建立顶点结点
{
for(int i = 1; i <= n; i++)
{
Ver[i].vex = i;
Ver[i].firarc = NULL;
}
}
void Insert(int a, int b, int w) //尾插法,插入以a为起点,b为终点,权为w的边,效率不如头插,可是能够去重边
{
arcnode * q = new arcnode(b, w);
if(Ver[a].firarc == NULL)
Ver[a].firarc = q;
else
{
arcnode * p = Ver[a].firarc;
if(p->vertex == b)
{
if(p->weight > w)
p->weight = w;
return ;
}
while(p->next != NULL)
{
if(p->next->vertex == b)
{
if(p->next->weight > w);
p->next->weight = w;
return ;
}
p = p->next;
}
p->next = q;
}
}
void Insert2(int a, int b, int w) //头插法,效率更高,但不能去重边
{
arcnode * q = new arcnode(b, w);
if(Ver[a].firarc == NULL)
Ver[a].firarc = q;
else
{
arcnode * p = Ver[a].firarc;
q->next = p;
Ver[a].firarc = q;
}
}
struct node //保存key值的结点
{
int v;
int key;
friend bool operator<(node a, node b) //自己定义优先级,key小的优先
{
return a.key > b.key;
}
}; #define INF 0xfffff //权值上限
bool visited[maxn]; //是否已经增加树
node vx[maxn]; //保存每一个结点与其父节点连接边的权值
priority_queue<node> q; //优先队列stl实现
void Prim() //s表示根结点
{
for(int i = 1; i <= n; i++) //初始化
{
vx[i].v = i;
vx[i].key = INF;
visited[i] = false;
}
vx[1].key = 0;
q.push(vx[1]);
while(!q.empty())
{
node nd = q.top(); //取队首,记得赶紧pop掉
q.pop();
if(visited[nd.v]) //注意这一句的深意,避免非常多不必要的操作
continue;
visited[nd.v] = true;
arcnode * p = Ver[nd.v].firarc;
while(p != NULL) //找到全部相邻结点,若未訪问,则入队列
{
if(!visited[p->vertex] && p->weight < vx[p->vertex].key)
{
vx[p->vertex].key = p->weight;
vx[p->vertex].v = p->vertex;
q.push(vx[p->vertex]);
}
p = p->next;
}
}
} int main()
{
int m, a, b, x;
while(~scanf("%d", &n))
{
Init();
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
scanf("%d", &x);
if(x != 0)
Insert2(i, j, x);
}
}
scanf("%d", &m);
while(m--)
{
scanf("%d%d", &a, &b);
Insert(a, b, 0);
Insert(b, a, 0);
}
Prim();
int ans = 0;
for(int i = 1; i <= n; i++)
ans += vx[i].key;
printf("%d\n", ans); }
return 0;
}

HDU 1102 Constructing Roads, Prim+优先队列的更多相关文章

  1. HDU 1102(Constructing Roads)(最小生成树之prim算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Ja ...

  2. hdu 1102 Constructing Roads (Prim算法)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...

  3. hdu 1102 Constructing Roads (最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...

  4. HDU 1102 Constructing Roads (最小生成树)

    最小生成树模板(嗯……在kuangbin模板里面抄的……) 最小生成树(prim) /** Prim求MST * 耗费矩阵cost[][],标号从0开始,0~n-1 * 返回最小生成树的权值,返回-1 ...

  5. hdu 1102 Constructing Roads Kruscal

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 题意:这道题实际上和hdu 1242 Rescue 非常相似,改变了输入方式之后, 本题实际上更 ...

  6. HDU 1102 Constructing Roads

    Constructing Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. HDU 1102 Constructing Roads(kruskal)

    Constructing Roads There are N villages, which are numbered from 1 to N, and you should build some r ...

  8. hdu 1102 Constructing Roads(最小生成树 Prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Problem Description There are N villages, which ...

  9. hdu 1102 Constructing Roads(kruskal || prim)

    求最小生成树.有一点点的变化,就是有的边已经给出来了.所以,最小生成树里面必须有这些边,kruskal和prim算法都能够,prim更简单一些.有一点须要注意,用克鲁斯卡尔算法的时候须要将已经存在的边 ...

随机推荐

  1. 最常用的动态sql语句梳理Mybatis(转)

    公司项目中一直使用Mybatis作为持久层框架,自然,动态sql写得也比较多了,最常见的莫过于在查询语句中使用if标签来动态地改变过滤条件了.Mybatis的强大特性之一便是它的动态sql,免除了拼接 ...

  2. 公钥\私人 ssh避password登陆

    相关概念以前见过,决不要注意,使用公共密钥管理之前,腾讯云主机的备案机,非常头发的感觉,查了一下相关资料,这里总结下: 字符a:192.168.7.188 (ubuntu) 字符b:192.168.7 ...

  3. [渣译文] SignalR 2.0 系列: 支持的平台

    原文:[渣译文] SignalR 2.0 系列: 支持的平台 英文渣水平,大伙凑合着看吧,并不是逐字翻译的…… 这是微软官方SignalR 2.0教程Getting Started with ASP. ...

  4. 低压电力采集平台DW710C与PC沟通

    集电极485接口RS-485与RS-232转换模块485端相连.RS-485与RS-232转换模块232通过串行电缆末端PC的232串口.我们通过书面沟通PC通信软件来实现双方并执行收购方案. 1)上 ...

  5. IBatis.Net获取执行的Sql语句

    前言 IBatis.Net中Sql语句是些在配置文件中的,而且配置文件是在程序启动时读取的(我们开发的时候需要将其设置成较新复制或者是始终复制),而不是程序将其包含在其中(例如NHibernate的映 ...

  6. 迅雷云加速开放平台c#demo

    迅雷云加速开放平台c#demo.很多人很遇到下载文件的问题.这个例子是调用迅雷云加速开放平台的dll,进行下载,速度很快,下载过程中可以获取到很全的下载信息,比如下载速度,进度,完成状态等. 例子中带 ...

  7. Windows 8实例教程系列 - 数据绑定高级实例

    原文:Windows 8实例教程系列 - 数据绑定高级实例 上篇Windows 8实例教程系列 - 数据绑定基础实例中,介绍Windows 8应用开发数据绑定基础,其中包括一些简单的数据绑定控件的使用 ...

  8. Android:创建耐磨应用 - 语音操作

    加入语音处理能力(Adding Voice Capabilities) 语音操作为用户体验可穿戴的重要组成部分,它允许用户快速.免提方式来运行操作. Wear它提供了两种类型的语音操作的: 该系统提供 ...

  9. 《学习opencv》笔记——矩阵和图像处理——cvMax,cvMaxS,cvMerge,cvMin and cvMinS

    矩阵和图像操作 (1)cvMax函数 其结构 void cvMax(//比較两个图像取最大值 const CvArr* src1,//图像1 const CvArr* src2,//图像2 CvArr ...

  10. 2014辽宁ACM省赛 Prime Factors

    问题 L: Prime Factors 时间限制: 1 Sec  内存限制: 128 MB [提交][状态][论坛] 题目描写叙述 I'll give you a number , please te ...