Bonferroni校正法
Bonferroni校正:如果在同一数据集上同时检验n个独立的假设,那么用于每一假设的统计显著水平,应为仅检验一个假设时的显著水平的1/n
http://baike.baidu.com/view/1217813.htm?fr=aladdin
Bonferroni校正法:
此方法是在进行两两比较时对检验水准进行调整的办法,但是该方法在比较的次数较多时,就不太适合,因为校正后的检验水准会过小。此时可采用sidark法进行多重比较(仍然是对检验水准进行调整)。
统计学中一般以小概率作为判断差异是否显著的标准,通常都以0.05或0.01作为判断标准。在多重比较中, bonferroni是以t分布作为检验分布的,但多重比较时若均以0.05作为小概率的话,每次比较就会有5%犯一型错误的可能。但如果有n次比较,如有4个组要做6次比较,则有C6(2)*5%一型错误发生的概率,不符合小概率判断的原则。因此,bonferroni中,将小概率0.05或0.01除以要比较的次数n,作为判断显著性的小概率,这样,多重比较总的一型错误发生的概率不会超过0.05或0.01。
控制累积Ⅰ类错误概率增大的方法
采用Bonferroni法,SNK法和Tukey法等方法
累积Ⅰ类错误的概率为α'
当有k个均数需作两两比较时,比较的次数共有c= = k!/(2!(k-2)!)=k(k-1)/2
设每次检验所用Ⅰ类错误的概率水准为α,累积Ⅰ类错误的概率为α',则在对同一实验资料进行c次检验时,在样本彼此独立的条件下,根据概率乘法原理,其累积Ⅰ类错误概率α'与c有下列关系:
α'=1-(1-α)c (8.6)
例如,设α=0.05,c=3(即k=3),其累积Ⅰ类错误的概率为α'=1-(1-0.05)3 =1-(0.95)3 = 0.143
一,Bonferroni法
方法:采用α=α'/c作为下结论时所采用的检验水准.c为两两比较次数, α'为累积I类错误的概率.
例8-1四个均值的Bonferroni法比较
设α=α'/c=0.05/6=0.0083,由此t的临界值为t(0.0083/2,20)=2.9271
Bonferroni法的适用性
当比较次数不多时,Bonferroni法的效果较好.
但当比较次数较多(例如在10次以上)时,则由于其检验水准选择得过低,结论偏于保守.
Bonferroni校正法的更多相关文章
- GWAS
GWAS的数据形式:SNP数据,即各个SNP位点的aa,Aa,AA基因型与疾病状态(0正常,1患病)的样例-对照数据. 在遗传流行病学上,全基因组关联研究(Genome Wide Associatio ...
- p值还是 FDR ?
p值还是 FDR ? 差异分析 如何筛选显著性差异基因,p value, FDR 如何选 经常有同学询问如何筛选差异的基因(蛋白).已经计算了表达量和p value值,差异的基因(蛋白)太多了,如何筛 ...
- FDR错误发现率-P值校正学习[转载]
转自:https://baike.baidu.com/item/FDR/16312044?fr=aladdin https://blog.csdn.net/taojiea1014/article/d ...
- 学习笔记50—多重假设检验与Bonferroni校正、FDR校正
总结起来就三句话: (1)当同一个数据集有n次(n>=2)假设检验时,要做多重假设检验校正 (2)对于Bonferroni校正,是将p-value的cutoff除以n做校正,这样差异基因筛选的p ...
- Holm–Bonferroni method
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...
- SAGE|DNA微阵列|RNA-seq|lncRNA|scripture|tophat|cufflinks|NONCODE|MA|LOWESS|qualitile归一化|permutation test|SAM|FDR|The Bonferroni|Tukey's|BH|FWER|Holm's step-down|q-value|
生物信息学-基因表达分析 为了丰富中心法则,研究人员使用不断更新的技术研究lncRNA的方方面面,其中技术主要是生物学上的微阵列芯片技术和表达数据分析方法,方方面面是指lncRNA的位置特征. Bac ...
- C语言-预估校正法求常微分方程
#include<stdio.h> #include<math.h> #define n 14 int main(){ double a = 0.0, b = 1.4,h,m= ...
- (转)基因芯片数据GO和KEGG功能分析
随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(Postgenome Era),向基因的功能及基因的多样性倾斜.通过 ...
- SAS学习笔记27 卡方检验
卡方检验(chi-square test)是英国统计学家Pearson提出的一种主要用于分析分类变量数据的假设检验方法,该方法主要目的是推断两个或多个总体率或构成比之间有无差别. 卡方分布界值表的依据 ...
随机推荐
- dpkg -P xx
dpkg -l | grep ^rc | cut -d' ' -f3|xargs dpkg -P http://www.linuxquestions.org/questions/debian-26/h ...
- 用Eclipse 统计代码行数小技巧
今天公司SQA问我目前项目代码行数有多少,我当时就是想,以前好像写过类似的统计工具但是一时又找不到 公司网络又不能下载,所以想想eclipse是不是又类似功能,找了下没有,但突然一想有一个转弯方法:统 ...
- call_compile.sql
set echo off prompt prompt ========================================================================= ...
- maven编码 gbk 的不可映射字符解决办法
出现这个问题修改一下pom文件的编译配置就好了. <plugin> <groupId>org.apache.maven.plugins</groupId> < ...
- They Are Everywhere
They Are Everywhere Sergei B., the young coach of Pokemons, has found the big house which consists o ...
- 1025:To the max(DP)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
- ARM汇编指令集
一.跳转指令.跳转指令用于实现程序流程的跳转,在ARM程序中有以下两种方法可以实现程序流程的跳转. Ⅰ.使用专门的跳转指令.Ⅱ.直接向程序计数器PC写入跳转地址值. 通过向程序计数器PC写入跳转地址值 ...
- Learning Ionic中文版本
最近没有干劲,空闲时间也足,然后找了个比较容易集中精神的事情在做: 翻译<learning ionic> ionic是一个整合angularjs和cordova混合应用开发框架. 它可以通 ...
- Android复习--广播
广播有两种方式,一种静态广播,一种动态广播. 静态广播-->静态广播接收器在配置文件里面注册. 动态广播-->而动态广播接收器在代码里面注册. 广播的发送: Context.sendBro ...
- UVa 816 Abbott的复仇(BFS)
寒假的第一道题目,在放假回家颓废了两天后,今天终于开始刷题了.希望以后每天也能多刷几道题. 题意:这道BFS题还是有点复杂的,给一个最多9*9的迷宫,但是每个点都有不同的方向,每次进入该点的方向不同, ...