As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a little special somehow. You are looking forward to it, too, aren't you? Unfortunately there still are months to go. Take it easy. Luckily you meet me. I have a problem for you to solve. Enjoy your time.

Now given a positive integer N, get the sum S of all positive integer divisors of 2008 N. Oh no, the result may be much larger than you can think. But it is OK to determine the rest of the division of S by K. The result is kept as M.

Pay attention! M is not the answer we want. If you can get 2008 M, that will be wonderful. If it is larger than K, leave it modulo K to the output. See the example for N = 1,K = 10000: The positive integer divisors of 20081 are 1、2、4、8、251、502、1004、2008,S = 3780, M = 3780, 2008 M % K = 5776.

InputThe input consists of several test cases. Each test case contains a line with two integers N and K (1 ≤ N ≤ 10000000, 500 ≤ K ≤ 10000). N = K = 0 ends the input file and should not be processed.

Output

For each test case, in a separate line, please output the result.

Sample Input

1  10000
0 0

Sample Output

5776

题意:
好好理解看清楚:
S=2008^x,所有因子和 get the sum S of all positive integer divisors of 2008 N.
M=S%k(已知k) the rest of the division of S by K. The result is kept as M
求2008^M%k
 #include<stdio.h>
typedef long long ll; ll ksm(ll x,ll n,ll mod)
{
ll res=;
while(n>)
{
if(n&)
res=res*x%mod;
x=x*x%mod;
n>>=;
}
return res%mod;
} //S=2008^x,所有因子和 get the sum S of all positive integer divisors of 2008 N.
//M=S%k(已知k) the rest of the division of S by K. The result is kept as M
//求2008^M%k int main()
{
ll n,k;
while(~scanf("%lld %lld",&n,&k))
{
if(n==&&k==)
break;
ll k2=ksm(,*n+,k*);
if(k2-<)
k2=k2-+k;
else
k2--; ll k251=ksm(,n+,*k);
if(k251-<)
k251=k251-+k;
else
k251--; ll M=k2*(k251)%(*k)/;
// ll M=k2*(k251/k)%(250*k);
// ll M=k2*(k251/250)%(250*k); WA,注意一下
ll ans=ksm(,M,k);
printf("%lld\n",ans);
}
return ;
}
												

HDU-1852-Beijing 2008-一个神奇的公式求逆元的更多相关文章

  1. HDU 1852 Beijing 2008 数论

    题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=1852 这道题和HDU1452类似. 题意:给你一个n.k,让你求2008^n所有因子的和(包括1和本 ...

  2. HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

    [题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...

  3. 一个简单的公式——求小于N且与N互质的数的和

    首先看一个简单的东西. 若$gcd(i,n)=1$,则有$gcd(n-i,n)=1$ 于是在小于$n$且与$n$互质的数中,$i$与$n-i$总是成对存在,且相加等于$n$. 考虑$i=n-i$的特殊 ...

  4. HDU1852 Beijing 2008(快速幂+特殊公式)

    As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a lit ...

  5. hdu 1852(快速幂模+有除法的时候取模的公式)

    Beijing 2008 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Tota ...

  6. HDU 1014 Uniform Generator(模拟和公式)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1014 Uniform Generator Time Limit: 2000/1000 MS (Java ...

  7. 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)

    题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...

  8. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  9. modifytime是一个神奇的column name----这边文章是错的totally,因为我的实验不彻底。timestamp属性很神奇,头一个timestamp,会自动的成DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

    在mysql里边modifytime是一个神奇的column name,试一下. 请执行sql语句 CREATE TABLE `test_time` ( `modifytime` timestamp ...

随机推荐

  1. 传输文件到docker容器

    传输文件到docker容器 首先需要知道docker容器的container_id,可以使用docker ps命令来查看你要操作的docker容器的container_id Docker容器向宿主机传 ...

  2. python模块:typing

    很多人在写完代码一段时间后回过头看代码,很可能忘记了自己写的函数需要传什么参数,返回什么类型的结果,就不得不去阅读代码的具体内容,降低了阅读的速度,加上Python本身就是一门弱类型的语言,这种现象就 ...

  3. dfs版容斥原理+剪枝——bzoj1853

    学了一种爆搜版+剪枝的容斥方法,即类似数位dp时按位进行容斥,同时需要在搜索过程中进行剪枝 /* 容斥原理,先在打出的表里筛掉所有倍数,然后用容斥原理+1个的倍数-2个lcm的倍数+3个lcm的倍数. ...

  4. springcloud分布式事务TXLCN

    新增一个model,pom文件引入依赖 <dependency>     <groupId>org.springframework.boot</groupId>   ...

  5. NX二次开发-UFUN获取当前所在的模块UF_ask_application_module

    NX9+VS2012 #include <uf.h> #include <NXOpen/UI.hxx> #include <NXOpen/MenuBar_MenuBarM ...

  6. Detours的使用准备

    Detours是微软开发的一个函数库,可用于捕获系统API.在用其进行程序开发之前,得做一些准备工作: 一.下载Detours 在http://research.microsoft.com/sn/de ...

  7. SPI 及初始化例子

    概述 时钟相性与极性 CPOL(Clock Polarity)控制空闲状态时SCK的值:CPOL=0,空闲时SCK=0:CPOL=1,空闲时SCK=1. CPHA(Clock Phase)控制何时捕获 ...

  8. access数据库调用

    1.工程环境配置(vs+qt) 点击项目,右键,选择项目设置,选择SQL 2.获取自己数据库的驱动版本有哪些,如下代码所示: QStringList drivers = QSqlDatabase::d ...

  9. 前端开发者进阶之ECMAScript新特性--Object.create

    前端开发者进阶之ECMAScript新特性[一]--Object.create   Object.create(prototype, descriptors) :创建一个具有指定原型且可选择性地包含指 ...

  10. RHEL7中网卡绑定team和bond的区别

    red hat 官方给出的team和bond特性对比 A Comparison of Features in Bonding and Team Feature Bonding Team broadca ...