The "eight queens puzzle" is the problem of placing eight chess queens on an 8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)

Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (, where Q​i​​ is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.

 
Figure 1   Figure 2

Input Specification:

Each input file contains several test cases. The first line gives an integer K (1). Then K lines follow, each gives a configuration in the format "N Q​1​​ Q​2​​ ... Q​N​​", where 4 and it is guaranteed that 1 for all ,. The numbers are separated by spaces.

Output Specification:

For each configuration, if it is a solution to the N queens problem, print YES in a line; or NO if not.

Sample Input:

4
8 4 6 8 2 7 1 3 5
9 4 6 7 2 8 1 9 5 3
6 1 5 2 6 4 3
5 1 3 5 2 4

Sample Output:

YES
NO
NO
YES
 #include <iostream>
#include <vector>
using namespace std;
int queen[];
int main()
{
int k, n, a;
cin >> k;
while (k--)
{
fill(queen, queen + , );
cin >> n;
bool res = true;
for (int i = ; i <= n; ++i)
{
cin >> queen[i];//新一列存入queen
for (int t = ; t < i; ++t)//判断前i-1列的queen是不是在同一行
{
if (queen[i] == queen[t] || abs(queen[i] - queen[t]) == abs(i - t))//是否存在相同行,和第t列的斜线位置
{
res = false;
break;
}
}
}
cout << (res == true ? "YES" : "NO") << endl;
}
return ;
}

PAT甲级——A1128 N Queens Puzzle【20】的更多相关文章

  1. PAT甲级 1128. N Queens Puzzle (20)

    1128. N Queens Puzzle (20) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The & ...

  2. PAT 甲级 1128. N Queens Puzzle (20) 【STL】

    题目链接 https://www.patest.cn/contests/pat-a-practise/1128 思路 可以 对每一个皇后 都判断一下 它的 行,列 ,左右对角线上 有没有皇后 深搜解决 ...

  3. PAT 甲级 1128 N Queens Puzzle

    https://pintia.cn/problem-sets/994805342720868352/problems/994805348915855360 The "eight queens ...

  4. PAT甲级:1152 Google Recruitment (20分)

    PAT甲级:1152 Google Recruitment (20分) 题干 In July 2004, Google posted on a giant billboard along Highwa ...

  5. PAT A1128 N Queens Puzzle (20 分)——数学题

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboar ...

  6. A1128. N Queens Puzzle

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboar ...

  7. PAT甲题题解-1128. N Queens Puzzle (20)-做了一个假的n皇后问题

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789810.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  8. PAT 甲级 1041 Be Unique (20 分)

    1041 Be Unique (20 分) Being unique is so important to people on Mars that even their lottery is desi ...

  9. PAT 甲级 1011 World Cup Betting (20)(20 分)

    1011 World Cup Betting (20)(20 分)提问 With the 2010 FIFA World Cup running, football fans the world ov ...

随机推荐

  1. 在Panel上绘图的实现

    近期制作了FDS的一个建模工具,由于知识有限,做出的效果是2D的.昨天上课的时候看老师画一个长方体,突然想到,为什么不给普通的2D图形加画上几条直线,就能实现2D图形的3D视觉效果呢?于是回来马上做了 ...

  2. HDU6331Problem M. Walking Plan

    传送门 分块floyd $f[i][j][k]$表示从i走k步到j的最短路 $g[i][j][k]$表示从i走k*100步到j的最短路 $h[i][j][k]$表示从i至少走k步到j的最短路 询问从x ...

  3. NX二次开发-UFUN求对象的最大边界框UF_MODL_ask_bounding_box

    NX9+VS2012 #include <uf.h> #include <uf_obj.h> #include <uf_modl.h> #include <u ...

  4. Visual Studio Code 的简单试用体验

    首先对Visual Studio Code做一个大概的介绍.首先明确一下,这个Visual Studio Code(以下简称 vscode)是一个带GUI的代码编辑器,也就是只能完成简单的代码编辑功能 ...

  5. Python对象继承set类型

    Python对象继承set类型 class Feature(set): def __init__(self): set.__init__(self) # 这里演示将Feature类的加号重载成set. ...

  6. python之tkinter学习目录

    前言 下面的目录结构,采用的学习视频资料是网易云课堂中[莫凡]老师的,在目录的最下面的地方给出了对应的链接! 学习是逐渐积累起来的,代码也是!下面的每一篇中的对应代码,都秉承着这样的一个理念:代码是成 ...

  7. Apache Solr 远程命令+XXE执行漏洞(CVE-2017-12629)

    Apache Solr 最近有出了个漏洞预警,先复习一下之前的漏洞 命令执行 先创建一个listener,其中设置exe的值为我们想执行的命令,args的值是命令参数 POST /solr/demo/ ...

  8. 安装mongo

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_40101530/articl ...

  9. 深入理解 js为什么没有函数重载,如何实现函数重载?

    我的新博客 http://www.suanliutudousi.com/2017/08/24/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3-js%E4%B8%BA%E4%B ...

  10. DRF的JWT用户认证

    目录 DRF的JWT用户认证 JWT的认证规则 JWT的格式 JWT认证的流程 JWT模块的导入为 JWT的使用 DRF的JWT用户认证 从根本上来说,JWT是一种开放的标准(RFC 7519), 全 ...