每道题附带动态示意图,提供java、python两种语言答案,力求提供leetcode最优解。

描述:

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

示例 1:

输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.

示例 2:

输入: n = 13
输出: 2
解释: 13 = 4 + 9.

思路:

    这道题的官方分类是【动态规划】,所以我们用动态规划的方法来解,动态规划最重要的是找到它的状态转移方程(即找出状态间的关系)。

  除了状态转移方程,我们也可以用状态转移表的方法来解题,但是状态转移表只能解维度比较低题,比如著名的0-1背包问题,影响状态转移的决策只有两种,把物品放入背包、不把物品放入背包。所以很容易就可以画出一张二维的状态转移表,但是像今天我们要解决的这种问题,假如n=12,那么影响状态转移的决策至少就有三种,取1,取4,取9,人脑很难想像出多维的状态转移表,所以这里我们采用状态转移方程的方法来解。

状态转移方程推导:

函数f(n)为求组成n的完全平方数的最小个数(就是该题),所以f(12) = 3;f(13) = 2。

我们记做f(n) = m。n可以拆分为 n = d + k*k这种形式。

比如12 = 8 + 2*2,13 = 4 + 3*3,因为无论是12还是13都是完全平方数组成的,所以一定可以转换成这种形式。

f(n) = f(d) + f(k*k),因为k*k是一个完全平方数,所以f(k*k) = 1

即f(n) = f(d) + 1,而由 n = d + k*k可得,d = n - k*k,所以上式可化为:

f(n) = f(n-k*k) + 1,(k*k < n)。

这就得出了状态转移方程:dp[i] = min(dp[i-j*j]+1, dp[i]),(j*j <= i)

这里和dp[i]取最小的原因是dp[i-j*j]+1可能不止一个值,取这些值中的最小值。

动图:

图中例子为f(5) = 2

5 = 4 + 1

实现:

java:

class Solution {
public int numSquares(int n) {
int[] dp = new int[n + 1];
for (int i = 1; i < dp.length; i++) {
dp[i] = i;
for (int j = 1; i - j * j >= 0; j++) {
dp[i] = Math.min(dp[i], dp[i - j * j]+1);
}
}
return dp[n];
}
}

结果:

python3:

class Solution:
def numSquares(self, n: int) -> int:
dp = [i for i in range(n + 1)]
for i in range(1, n + 1):
for j in range(1, n + 1):
if i - j * j >= 0:
dp[i] = min(dp[i], dp[i - j * j] + 1)
else:
break
return dp[n]

结果:

期待您的关注、推荐、收藏,同时也期待您的纠错和批评,想看leetcode的其他题,可以在博客下方留言,每周都会更新。

图解leetcode279 —— 完全平方数的更多相关文章

  1. [Swift]LeetCode279. 完全平方数 | Perfect Squares

    Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...

  2. leetcode279. 完全平方数

    给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12输出: 3 解释: 12 = ...

  3. leetcode探索高级算法

    C++版 数组和字符串 正文 链表: 正文 树与图: 树: leetcode236. 二叉树的最近公共祖先 递归(先序) leetcode124二叉树最大路径和 递归 图: leetcode 547朋 ...

  4. Leetcode279. Perfect Squares完全平方数

    给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解释: 12 ...

  5. 图解CSS3制作圆环形进度条的实例教程

    圆环形进度条制作的基本思想还是画出基本的弧线图形,然后CSS3中我们可以控制其旋转来串联基本图形,制造出部分消失的效果,下面就来带大家学习图解CSS3制作圆环形进度条的实例教程 首先,当有人说你能不能 ...

  6. 《图解HTTP》读书笔记

    目前国内讲解HTTP协议的书是在太少了,记忆中有两本被誉为经典的书<HTTP权威指南>与<TCP/IP详解,卷1>,但内容晦涩难懂,学习难度较大.其实,HTTP协议并不复杂,理 ...

  7. [PostgreSQL] 图解安装 PostgreSQL

    图解安装 PostgreSQL [博主]反骨仔 [原文地址]http://www.cnblogs.com/liqingwen/p/5894462.html 序 园友的一篇<Asp.Net Cor ...

  8. 图解ios程序生命周期

    图解ios程序生命周期 应用程序启动后状态有Active.Inactive.Background.Suspended.Not running这5种状态,几种状态的转换见下图: 在AppDelegate ...

  9. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

随机推荐

  1. oracle 共享SQL语句

    为了不重复解析相同的SQL语句,在第一次解析之后, ORACLE将SQL语句存放在内存中.这块位于系统全局区域SGA(system global area)的共享池(shared buffer poo ...

  2. Android 动态设置控件获取焦点

    之前写过一篇博客,简单的介绍了Android 隐藏EditText的焦点,之所以要隐藏EditText的焦点,是因为当应用在第一次进入某个Activity时,由于该页面中的EditText获取了焦点, ...

  3. Codeforces Round #529 (Div. 3) E. Almost Regular Bracket Sequence(思维)

    传送门 题意: 给你一个只包含 '(' 和 ')' 的长度为 n 字符序列s: 给出一个操作:将第 i 个位置的字符反转('(' ')' 互换): 问有多少位置反转后,可以使得字符串 s 变为&quo ...

  4. 2018-4-29-C#-金额转中文大写

    title author date CreateTime categories C# 金额转中文大写 lindexi 2018-04-29 09:50:38 +0800 2018-04-02 21:4 ...

  5. Redux 初始化完整结构

    文件管理 目录文档 ★★★index.js★★★ ★★★app.js★★★ ★★★store->index.js★★★ ★★★actions->index.js★★★ ★★★store-& ...

  6. Python--day32--复习:https和http的区别;黏包;黏包问题的解决方式;

    1,https和http的区别: https比较安全,传输的时候先对内容进行加密,收到后再进行解密:它的传输内容不容易拦截,就算拦截下来了,也是加密的,看不懂.但是要买证书,一年要好几万,小公司承担不 ...

  7. 2019-10-10-优雅调试-REST-API-的工具

    title author date CreateTime categories 优雅调试 REST API 的工具 lindexi 2019-10-10 20:9:33 +0800 2019-10-1 ...

  8. 如何在 centos 7.3 上安装 caffe 深度学习工具

    有好多朋友在安装 caffe 时遇到不少问题.(看文章的朋友希望关心一下我的创业项目趣智思成) 今天测试并整理一下安装过程.我是在阿里云上测试,选择centos 7.3 镜像. 先安装 epel 源 ...

  9. Spring Security 学习笔记-授权控制过滤器

    FilterSecurityInterceptor  是比较核心的过滤器,主要负责授权工作.SecurityMetadataSource 需要安全授权的元数据资源 AuthenticationMana ...

  10. H3C 端口绑定典型配置举例