每道题附带动态示意图,提供java、python两种语言答案,力求提供leetcode最优解。

描述:

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

示例 1:

输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.

示例 2:

输入: n = 13
输出: 2
解释: 13 = 4 + 9.

思路:

    这道题的官方分类是【动态规划】,所以我们用动态规划的方法来解,动态规划最重要的是找到它的状态转移方程(即找出状态间的关系)。

  除了状态转移方程,我们也可以用状态转移表的方法来解题,但是状态转移表只能解维度比较低题,比如著名的0-1背包问题,影响状态转移的决策只有两种,把物品放入背包、不把物品放入背包。所以很容易就可以画出一张二维的状态转移表,但是像今天我们要解决的这种问题,假如n=12,那么影响状态转移的决策至少就有三种,取1,取4,取9,人脑很难想像出多维的状态转移表,所以这里我们采用状态转移方程的方法来解。

状态转移方程推导:

函数f(n)为求组成n的完全平方数的最小个数(就是该题),所以f(12) = 3;f(13) = 2。

我们记做f(n) = m。n可以拆分为 n = d + k*k这种形式。

比如12 = 8 + 2*2,13 = 4 + 3*3,因为无论是12还是13都是完全平方数组成的,所以一定可以转换成这种形式。

f(n) = f(d) + f(k*k),因为k*k是一个完全平方数,所以f(k*k) = 1

即f(n) = f(d) + 1,而由 n = d + k*k可得,d = n - k*k,所以上式可化为:

f(n) = f(n-k*k) + 1,(k*k < n)。

这就得出了状态转移方程:dp[i] = min(dp[i-j*j]+1, dp[i]),(j*j <= i)

这里和dp[i]取最小的原因是dp[i-j*j]+1可能不止一个值,取这些值中的最小值。

动图:

图中例子为f(5) = 2

5 = 4 + 1

实现:

java:

class Solution {
public int numSquares(int n) {
int[] dp = new int[n + 1];
for (int i = 1; i < dp.length; i++) {
dp[i] = i;
for (int j = 1; i - j * j >= 0; j++) {
dp[i] = Math.min(dp[i], dp[i - j * j]+1);
}
}
return dp[n];
}
}

结果:

python3:

class Solution:
def numSquares(self, n: int) -> int:
dp = [i for i in range(n + 1)]
for i in range(1, n + 1):
for j in range(1, n + 1):
if i - j * j >= 0:
dp[i] = min(dp[i], dp[i - j * j] + 1)
else:
break
return dp[n]

结果:

期待您的关注、推荐、收藏,同时也期待您的纠错和批评,想看leetcode的其他题,可以在博客下方留言,每周都会更新。

图解leetcode279 —— 完全平方数的更多相关文章

  1. [Swift]LeetCode279. 完全平方数 | Perfect Squares

    Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...

  2. leetcode279. 完全平方数

    给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12输出: 3 解释: 12 = ...

  3. leetcode探索高级算法

    C++版 数组和字符串 正文 链表: 正文 树与图: 树: leetcode236. 二叉树的最近公共祖先 递归(先序) leetcode124二叉树最大路径和 递归 图: leetcode 547朋 ...

  4. Leetcode279. Perfect Squares完全平方数

    给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解释: 12 ...

  5. 图解CSS3制作圆环形进度条的实例教程

    圆环形进度条制作的基本思想还是画出基本的弧线图形,然后CSS3中我们可以控制其旋转来串联基本图形,制造出部分消失的效果,下面就来带大家学习图解CSS3制作圆环形进度条的实例教程 首先,当有人说你能不能 ...

  6. 《图解HTTP》读书笔记

    目前国内讲解HTTP协议的书是在太少了,记忆中有两本被誉为经典的书<HTTP权威指南>与<TCP/IP详解,卷1>,但内容晦涩难懂,学习难度较大.其实,HTTP协议并不复杂,理 ...

  7. [PostgreSQL] 图解安装 PostgreSQL

    图解安装 PostgreSQL [博主]反骨仔 [原文地址]http://www.cnblogs.com/liqingwen/p/5894462.html 序 园友的一篇<Asp.Net Cor ...

  8. 图解ios程序生命周期

    图解ios程序生命周期 应用程序启动后状态有Active.Inactive.Background.Suspended.Not running这5种状态,几种状态的转换见下图: 在AppDelegate ...

  9. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

随机推荐

  1. uva 11174 Stand in a Line (排列组合)

    UVa Online Judge 训练指南的题目. 题意是,给出n个人,以及一些关系,要求对这n个人构成一个排列,其中父亲必须排在儿子的前面.问一共有多少种方式. 做法是,对于每一个父节点,将它的儿子 ...

  2. 第一次作业:C++ 函数重载

    函数重载 函数重载是在C语言的学习中未涉及的新概念.我们在编程时经常会遇到这样一个问题:我们编写完一个函数准备准备调用时,一旦需要传入不同的数据类型的参数时,一个函数无法实现,我们又必须重写另一个或者 ...

  3. SuperSocket 服务管理器 (ServerManager)

    什么 SuperSocket 服务管理器? SuperSocket 服务管理器是一个让你能够在客户中用图形化界面来管理和监控你的SuperSocket服务器程序的组件. 在服务器端配置服务器管理器 事 ...

  4. background背景色

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. 什么是HOOK技术

    https://zhidao.baidu.com/question/50557962.html HOOK技术是Windows消息处理机制的一个平台,应用程序可以在上面设置子程序以监视指定窗口的某种消息 ...

  6. Python--day69--ORM多对多查询

    ManyToManyField class RelatedManager "关联管理器"是在一对多或者多对多的关联上下文中使用的管理器. 它存在于下面两种情况: 外键关系的反向查询 ...

  7. tensorflow -gpu安装,史上最新最简单的途径(不用自己装cuda,cdnn)

    tensorflow -gpu安装首先,安装Anoconda1. 官网下载点我: 2.安装 点击 python 3.6 version自动下载x64版,下载好之后,然后安装. 如图,打上勾之后,一路n ...

  8. PTA 6-2 多项式求值

    PTA 6-2 多项式求值 本题要求实现一个函数 本题要求实现一个函数,计算阶数为n,系数为a[0] ... a[n]的多项式f(x)=∑i=0n(a[i]×xi)" role=" ...

  9. 2018-8-10-WPF-判断调用方法堆栈

    title author date CreateTime categories WPF 判断调用方法堆栈 lindexi 2018-08-10 19:16:53 +0800 2018-2-13 17: ...

  10. Spring Data JPA坑点记录

    本篇进行Spring-data-jpa的介绍,几乎涵盖该框架的所有方面,在日常的开发当中,基本上能满足所有需求.这里不讲解JPA和Spring-data-jpa单独使用,所有的内容都是在和Spring ...