【题解】BZOJ4241: 历史研究(魔改莫队)
【题解】BZOJ4241: 历史研究(魔改莫队)
真的是好题啊
题意
给你一个序列和很多组询问(可以离线),问你这个区间中\(\max\){元素出现个数\(\times\)元素权值}
IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记。JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件。
日记中记录了连续N天发生的时间,大约每天发生一件。
事件有种类之分。第i天(1<=i<=N)发生的事件的种类用一个整数Xi表示,Xi越大,事件的规模就越大。
JOI教授决定用如下的方法分析这些日记:
\1. 选择日记中连续的一些天作为分析的时间段
\2. 事件种类t的重要度为t*(这段时间内重要度为t的事件数)
\3. 计算出所有事件种类的重要度,输出其中的最大值
现在你被要求制作一个帮助教授分析的程序,每次给出分析的区间,你需要输出重要度的最大值。
题解
和区间元素出现个数有关,先考虑一下莫队。莫队维护了元素出现个数,现在要知道元素\(\times\)权值最大值。
可以发现,你向莫队记录的答案中添加数是可以的,可以正确维护最大值(请意会:ans=max(ans,(ll)data[i]*cnt[i]);),但是对于要删除元素来说不行(你莫队套别的数据结构也不行,超时),所以我们的莫队仅仅支持添加元素。
只能够添加元素的莫队?那能不能魔改一下莫队?
考虑将询问按照莫队一样的方式将询问分块,总共有\(O(\sqrt n)\)块,每一块询问相互独立。对于每一块询问,和莫队一样,按照右端点升序排序。
先考虑一个询问右端点怎么搞定: 我们搞个指针一直向右增加,维护一个\(cnt[]\)数组。这样的复杂度是\(O(n)\)的,因为这个指针不会回退。
再考虑左端点怎么搞定: 直接暴力统计。我们让之前那个指针从当前块右端点出发向右。现在块右端点右边边的\(cnt[]\)可以得到了。
但是我们还差块右端点左边的贡献。这部分以之前那个\(cnt[]\)为基础直接暴力统计,因为这里仍然是只向莫队添加元素,所以可以统计答案。由于是莫队的方式询问分块,对于每个询问,暴力统计的复杂度不超过\(O(\sqrt n)\)。
但是可能询问区间就小于\(\sqrt n\),为了防止我们讨论边界情况,这部分询问直接读入的时候就处理了。
分析一下复杂度:
- 对于每个询问,暴力统计部分是\(O(\sqrt n)\),这部分复杂度\(O(n\sqrt n)\)
- 对于每个块,指针向右移动\(O(n)\)的,这部分复杂度\(O(n\sqrt n)\)
- 对于那种小询问,暴力统计\(O(n\sqrt n)\)的
- 其实要离散化,但是我们不需要按照大小离散化,直接哈希\(O(n)\) 。(bzoj不支持,只能用map)
总复杂度\(O(n\sqrt n)\)
这道题实际上提供了如何写只支持添加/删除操作的莫队的算法。普适性很广。
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#include<map>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
struct E{
int l,r,id;
E(){l=r=0;}
E(const int&a,const int&b,const int&c){l=a;r=b;id=c;}
inline bool operator <(const E&a)const{return r<a.r;}
};
const int maxn=1e5+5;
int cnt0,n,m,N;
int be[maxn],cnt[maxn],arc[maxn],data[maxn];
ll ans[maxn],now;
map<int,int> s0;
vector<int> s;
vector<E> ve[355];
inline void add(const int&pos,const int&tag){
cnt[data[pos]]+=tag;
if(1ll*cnt[data[pos]]*arc[data[pos]]>now) now=1ll*cnt[data[pos]]*arc[data[pos]];
}
int main(){
n=qr(); m=qr(); N=sqrt(n-1)+1;
for(register int t=1;t<=n;++t){
data[t]=qr();
if(s0.find(data[t])==s0.end()) s0[data[t]]=++cnt0,arc[cnt0]=data[t];
data[t]=s0[data[t]];
}
for(register int t=1;t<=n;++t) be[t]=(t-1)/N+1;
for(register int t=1,t1,t2;t<=m;++t) {
t1=qr(),t2=qr();
if(t2-t1-5<N){
now=0;
for(register int t=t1;t<=t2;++t) add(t,1),s.push_back(data[t]);
for(register int t=0,ed=s.size();t<ed;++t) --cnt[s[t]];
ans[t]=now; s.clear();
continue;
}
ve[be[t1]].push_back(E(t1,t2,t));
}
for(register int t=1;t<=be[n];++t){
if(ve[t].empty()) continue;
memset(cnt,0,sizeof cnt);
sort(ve[t].begin(),ve[t].end());
int R=N*t,st=R; ll tnow=now=0;
for(register int i=0,ed=ve[t].size();i<ed;++i){
register E f=ve[t][i];
while(R<f.r) add(++R,1);
tnow=now;
for(register int t=st;t>=f.l;--t) add(t,1),s.push_back(data[t]);
for(register int t=0,ed=s.size();t<ed;++t) --cnt[s[t]];
ans[f.id]=now; now=tnow; s.clear();
}
}
for(register int t=1;t<=m;++t) printf("%lld\n",ans[t]);
return 0;
}
【题解】BZOJ4241: 历史研究(魔改莫队)的更多相关文章
- BZOJ4241历史研究——回滚莫队
题目描述 IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. 日记中记录了连 ...
- BZOJ4241:历史研究(回滚莫队)
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- bzoj4241/AT1219 历史研究(回滚莫队)
bzoj4241/AT1219 历史研究(回滚莫队) bzoj它爆炸了. luogu 题解时间 我怎么又在做水题. 就是区间带乘数权众数. 经典回滚莫队,一般对于延长区间简单而缩短区间难的莫队题可以考 ...
- BZOJ.4241.历史研究(回滚莫队 分块)
题目链接 \(Description\) 长度为n的数列,m次询问,每次询问一段区间最大的 \(A_i*tm_i\) (重要度*出现次数) \(Solution\) 好像可以用莫队做,但是取max的操 ...
- LOJ2874 JOISC2014 历史研究 分块、莫队
传送门 看到出现次数自然地考虑莫队. 但是发现如果需要删除并动态维护答案的话,则要用一个堆来维护答案,增加了一个\(log\).但是加入操作却没有这个\(log\),所以我们考虑避免删除操作. 分块, ...
- 「JOISC 2014 Day1」历史研究 --- 回滚莫队
题目又臭又长,但其实题意很简单. 给出一个长度为\(N\)的序列与\(Q\)个询问,每个询问都对应原序列中的一个区间.对于每个查询的区间,设数\(X_{i}\)在此区间出现的次数为\(Sum_{X_{ ...
- [JOISC2014]歴史の研究/[BZOJ4241]历史研究
[JOISC2014]歴史の研究/[BZOJ4241]历史研究 题目大意: 一个长度为\(n(n\le10^5)\)的数列\(A(A_i\le10^9)\),定义一个元素对一个区间\([l,r]\)的 ...
- BZOJ4241历史研究题解--回滚莫队
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4241 分析 这题就是求区间权值乘以权值出现次数的最大值,一看莫队法块可搞,但仔细想想,莫 ...
- BZOJ4241 历史研究 莫队 堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目 Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JO ...
随机推荐
- saltStack_template
模版使用 新建文件:vim dns.sls vim file/resolv.conf 执行 : [root@server_client base]# salt \* state.sls dns ...
- 检查进程启动情况,开始时间、启动时间、启动进程数、进程数是否正确、PID
#!/bin/sh bin=$(cd ``;pwd) cd ${bin} ### 定义检查函数 chk(){ programName=$ correctNum=$ programSubName=$ # ...
- CDQ分治 三维偏序
这应该是一道CDQ分治的入门题目 我们知道,二维度的偏序问题直接通过,树状数组就可以实现了,但是三维如何实现呢? 我记得以前了解过一个小故事,应该就是分治的. 一个皇帝,想给部下分配任务,但是部下太多 ...
- 使用模块定义AngularJS组件
一.模块创建/查找 module 当创建一个模块时,必须指定name和requires参数,即使你的模块并不存在依赖 var myApp=angular.module("exampleApp ...
- 基于jquery读取input上传的文件内容
<script src="/static/js/jquery.js"></script> // 前端页面实现头像预览 // 当用户选中文件之后,也就是头像的 ...
- Python--day19--time模块
时间戳转化成结构化时间: 本地时间转换成时间字符串: 时间模块 和时间有关系的我们就要用到时间模块.在使用模块之前,应该首先导入这个模块. #常用方法 1.time.sleep(secs) (线程)推 ...
- Python--day62--编辑出版社功能
1,Django项目主要用到的文件
- springmvc web.xml和application.xml配置详情(附:完整版pom.xml)
web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns="htt ...
- 第一种方式:cookie的优化与购物车实例
一 Cookie 的优化 1.1 一般而言,我们设置cookie是在php中设置 例如: <?php setcookie('testKey1','hello world',0,'/'); //# ...
- Argus--[优先队列]
Description A data stream is a real-time, continuous, ordered sequence of items. Some examples inclu ...