传送门

题目描述

给定整数N,求1<=x,y<=N且GCD(x,y)为素数的数对(x,y)有多少对。

GCD(x,y)即求x,y的最大公约数。

输入格式

输入一个整数N

输出格式

输出一个整数,表示满足条件的数对数量。

数据范围

1≤N≤10^7

输入样例:

4

输出样例:

4

题解:本题要求1<=x,y<=N且GCD(x,y)为素数的数对(x,y)数量,相当于求:对于N以内的每一个素数p,1<=x,y<=N/p 中GCD(x,y)为1的数对(x,y)数量和。我们知道欧拉函数的定义是1~n中与n互质的数的个数,那么对于p,1<=x,y<=N/p 中GCD(x,y)为1的数对(x,y)数量为φ(1)+φ(2)...+φ(N/p),可以用前缀和计算。要注意:x,y大小关系无影响所以要*2,但x,y相同时只算一次所以要-1。题目就变成了求\[\sum_{p是素数}^{p≤n} 2*\sum_{i=1}^{n/p}φ(i) -1\]  也可以用\[\sum_{p是素数}^{p≤n} 2*\sum_{i=2}^{n/p}φ(i) +1\]。

    

代码:

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1e7 + ;
int v[N],prime[N];
ll sum[N],phi[N];
int cnt = ;
int main() {
int n;
scanf("%d",&n);
phi[]=;
for (int i = ; i <= n; i++) {
if(!v[i]) {
v[i] = i;prime[cnt++] = i;
phi[i] = i-;
}
for (int j = ; j < cnt; j++) {
if (prime[j] > v[i] || prime[j] > n/i) break;
v[i*prime[j]] = prime[j];
phi[i*prime[j]] = phi[i] * (i%prime[j]?prime[j]-:prime[j]);
}
}
for (int i = ; i <= n; i++)
sum[i] = sum[i-]+phi[i];
ll ans = ;
for (int i = ; i < cnt; i++) {
int num = n/prime[i];
ans += *sum[num]-;
}
printf("%lld\n",ans);
return ;
}

AcWing 220. 最大公约数 | 欧拉函数的更多相关文章

  1. AcWing 220.最大公约数 欧拉函数打卡

    题目:https://www.acwing.com/problem/content/222/ 题意:求1-n范围内,gcd(x,y)是素数的对数 思路:首先我们可以针对每个素数p,那么他的贡献应该时  ...

  2. AcWing 874. 筛法求欧拉函数

    #include<bits/stdc++.h> using namespace std; typedef long long ll; ; int primes[N],cnt; int ph ...

  3. 51nod 1040最大公约数和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

  4. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  5. 51nod 1040 最大公约数的和 欧拉函数

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

  6. acwing 873. 欧拉函数 模板

    地址 https://www.acwing.com/problem/content/875/ 给定n个正整数ai,请你求出每个数的欧拉函数. 欧拉函数的定义 输入格式 第一行包含整数n. 接下来n行, ...

  7. 51nod1040 最大公约数之和,欧拉函数或积性函数

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...

  8. BZOJ 最大公约数 (通俗易懂&效率高&欧拉函数)

    题目 题目描述 给定整数\(N\),求\(1 \le x,y \le N\)且\(gcd(x,y)\)为素数的数对\((x,y)\)有多少对. \(gcd(x,y)\)即求\(x,y\)的最大公约数. ...

  9. 【洛谷 P1390】 公约数的和 (欧拉函数)

    题目链接 做过\(n\)遍这种题了... 答案就是\(\sum_{i=1}^{n}\sum_{j=1}^{n/i}[\varphi(j)*i]\) 线筛欧拉函数求前缀和直接算就行. #include ...

随机推荐

  1. Eclipse里编辑代码,进度条出现“Remote System Explorer Operation”解决方法

    Eclipse里编辑代码,进度条出现"Remote System Explorer Operation",导致Eclipse有卡顿. 解决方法: Eclipse -> Pre ...

  2. Android Animation动画详解(一): 补间动画

    前言 你有没有被一些APP中惊艳的动画效果震撼过,有没有去思考,甚至研究过这些动画是如何实现的呢? 啥?你没有思考,更没有研究过? 好吧,那跟着我一起来学习下如何去实现APP中那些让我们惊羡的动画特效 ...

  3. 基于BERT预训练的中文命名实体识别TensorFlow实现

    BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...

  4. HDU 2601

    题意:给出一个n求出n=i*j+i+j共有几种组合,i,j>0. 开始挺傻的.没想到化成因式的乘积.- - . 思路:i*j+i+j=(i+1)*(j+1)=n+1 #include<io ...

  5. H3C NAT的信息显示和调试

  6. Vue之webpack的安装与配置及其简单应用

    一.文件结构 二.index.html <!DOCTYPE html> <html lang="en"> <head> <meta cha ...

  7. H3C 传递信息

  8. SVN提示update更新成功,但是本地文件却没有更新

    问题描述:将仓库的最新版本代码check out到本地后,然后最某个文件做了修改,保存后想通过svn的update来重新得到最新的版本,发现失效. 原因:经过多方查找原因,主要看了以下两篇文档 htt ...

  9. Vue 设置style属性

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. linux 字符设备注册

    如我们提过的, 内核在内部使用类型 struct cdev 的结构来代表字符设备. 在内核调用你 的设备操作前, 你编写分配并注册一个或几个这些结构. [11] 11为此, 你的代码应当包含 < ...