c#数字图像处理(十二)图像的腐蚀与膨胀
背景知识
腐蚀与膨胀基本原理:就是用一个特定的结构元素来与待处理图像按像素做逻辑操作;可以理解成拿一个带孔的网格板(结构元素矩阵中元素为1的为孔)盖住图像的某一部分,然后按照各种不同的观察方式来确定操作类型。
比如:腐蚀操作就是拿这个结构元素的中心位置(假设参与逻辑计算的元素对应与二维矩阵中元素为1的点,即网格板上的孔),在图像上移动时,如果透过所有的孔都能看到底下的图像,那么这个中心点处的图像就保留,否则去除。
腐蚀
图像腐蚀运算定义
二值图像腐蚀运算的数学表达式为
g(x,y)=erode[f(x, y ), B]=AND[Bf(x,y)]
其中,g(x,y)为腐蚀后的二值图像,f(x,y)为原二值图像,B为结构元素。B(x,y)定义为:
Bf(x,y)={f(x-bx, y-by) ,(bx, by)∈B}
算子AND(x1,…,xn)定义为:当且仅当x1=··=xn=1时,AND(x1,…,xn)等于1;否则为0。
把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba∈X}=XB。原理图如下:
实际使用时示意图:
说明:左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。
private void erode_Click(object sender, EventArgs e)
{
if (curBitmap != null)
{
struction struForm = new struction();
struForm.Text = "腐蚀运算结构元素";
if (struForm.ShowDialog() == DialogResult.OK)
{
Rectangle rect = new Rectangle(, , curBitmap.Width, curBitmap.Height);
BitmapData bmpData = curBitmap.LockBits(rect, ImageLockMode.ReadWrite, curBitmap.PixelFormat);
IntPtr ptr = bmpData.Scan0;
int bytes = curBitmap.Width * curBitmap.Height;
byte[] grayValues = new byte[bytes];
Marshal.Copy(ptr, grayValues, , bytes); //得到结构元素
byte flagStru = struForm.GetStruction; byte[] tempArray = new byte[bytes];
for (int i = ; i < bytes; i++)
{
tempArray[i] = ;
}
switch (flagStru)
{
case 0x11:
//3位水平方向结构元素
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j ++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
}
}
}
break;
case 0x21:
//5位水平方向结构元素
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
}
}
}
break;
case 0x12:
//3位垂直方向结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x22:
//5位垂直方向结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x14:
//3位十字形状结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x24:
//5位十字形状结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x18:
//3位方形结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x28:
//5位方形结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
default:
MessageBox.Show("错误的结构元素!");
break;
} grayValues = (byte[])tempArray.Clone();
Marshal.Copy(grayValues, , ptr, bytes);
curBitmap.UnlockBits(bmpData);
} Invalidate();
}
}
#region 关于图像尺寸的说明 //本代码只能处理8位深度的512*512图像。可自行修改,如修改3位水平方向结构元素代码: //01修改成如下代码即可处理任意尺寸的8位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 &&
// grayValues[i * bmpData.Stride + j + 3] == 0 &&
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //02修改成如下代码即可处理任意尺寸的24位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 4; j < curBitmap.Width * 3 - 3; j += 3)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 &&
// grayValues[i * bmpData.Stride + j + 3] == 0 &&
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//}
#endregion
膨胀
图像膨胀运算定义
二值图像膨胀运算的数学表达式为:
g(x, y)=dilate[f(x, y), B]=OR[Bf(x,y)]
其中,g(x,y)为膨胀后的二值图像,f(x,y)为原二值图像,B为结构元素。
B(x,y)定义为:
Bf(x,y)={f(x-bx, y-by) ,(bx, by)∈B}
算子OR(x1…xn)定义为:当且仅当x1=…=xn=0时,OR(x1,…xn)等于0;否则为1
膨胀(dilation)可以看做是腐蚀的对偶运算,其定义是:把结构元素B平移a后得到Ba,若Ba击中X,我们记下这个a点。所有满足上述条件的a点组成的集合称做X被B膨胀的结果。用公式表示为:D(X)={a | Ba↑X}=X B,如图6.13所示。图6.13中X是被处理的对象,B是结构元素,不难知道,对于任意一个在阴影部分的点a,Ba击中X,所以X被B膨胀的结果就是那个阴影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的,这就是为什么叫膨胀的原因。原理图如下:
实际使用时示意图:
说明:左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B。膨胀的方法是,拿B的中心点和X上的点及X周围的点一个一个地对,如果B上有一个点落在X的范围内,则该点就为黑;右边是膨胀后的结果。可以看出,它包括X的所有范围,就象X膨胀了一圈似的。
private void dilate_Click(object sender, EventArgs e)
{
if (curBitmap != null)
{
struction struForm = new struction();
struForm.Text = "膨胀运算结构元素";
if (struForm.ShowDialog() == DialogResult.OK)
{
Rectangle rect = new Rectangle(, , curBitmap.Width, curBitmap.Height);
BitmapData bmpData = curBitmap.LockBits(rect, ImageLockMode.ReadWrite, curBitmap.PixelFormat);
IntPtr ptr = bmpData.Scan0;
int bytes = curBitmap.Width * curBitmap.Height;
byte[] grayValues = new byte[bytes];
Marshal.Copy(ptr, grayValues, , bytes); byte flagStru = struForm.GetStruction; byte[] tempArray = new byte[bytes];
for (int i = ; i < bytes; i++)
{
tempArray[i] = ;
} switch (flagStru)
{
case 0x11:
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x21:
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x12:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x22:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x14:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x24:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x18:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x28:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[i * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
default:
MessageBox.Show("错误的结构元素!");
break;
} grayValues = (byte[])tempArray.Clone(); System.Runtime.InteropServices.Marshal.Copy(grayValues, , ptr, bytes);
curBitmap.UnlockBits(bmpData);
} Invalidate();
}
}
#region 关于图像尺寸的说明 //本代码只能处理8位深度的512*512图像。可自行修改,例如修改3位水平方向结构元素代码: //01修改成如下代码即可处理任意尺寸的8位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 ||
// grayValues[i * bmpData.Stride + j + 3] == 0 ||
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //02修改成如下代码即可处理任意尺寸的24位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 4; j < curBitmap.Width * 3 - 3; j += 3)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 ||
// grayValues[i * bmpData.Stride + j + 3] == 0 ||
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//}
#endregion
c#数字图像处理(十二)图像的腐蚀与膨胀的更多相关文章
- Win8MetroC#数字图像处理--2.2图像二值化函数
原文:Win8MetroC#数字图像处理--2.2图像二值化函数 [函数代码] /// <summary> /// Binary process. /// </summary> ...
- Win8 Metro(C#)数字图像处理--3.2图像方差计算
原文:Win8 Metro(C#)数字图像处理--3.2图像方差计算 /// <summary> /// /// </summary>Variance computing. / ...
- Win8 Metro(C#)数字图像处理--3.3图像直方图计算
原文:Win8 Metro(C#)数字图像处理--3.3图像直方图计算 /// <summary> /// Get the array of histrgram. /// </sum ...
- Win8 Metro(C#)数字图像处理--3.4图像信息熵计算
原文:Win8 Metro(C#)数字图像处理--3.4图像信息熵计算 [函数代码] /// <summary> /// Entropy of one image. /// </su ...
- Win8 Metro(C#)数字图像处理--3.5图像形心计算
原文:Win8 Metro(C#)数字图像处理--3.5图像形心计算 /// <summary> /// Get the center of the object in an image. ...
- Win8 Metro(C#)数字图像处理--3.1图像均值计算
原文:Win8 Metro(C#)数字图像处理--3.1图像均值计算 /// <summary> /// Mean value computing. /// </summary> ...
- Win8 Metro(C#)数字图像处理--2.74图像凸包计算
原文:Win8 Metro(C#)数字图像处理--2.74图像凸包计算 /// <summary> /// Convex Hull compute. /// </summary> ...
- Win8 Metro(C#)数字图像处理--2.68图像最小值滤波器
原文:Win8 Metro(C#)数字图像处理--2.68图像最小值滤波器 /// <summary> /// Min value filter. /// </summary> ...
- Win8 Metro(C#)数字图像处理--2.52图像K均值聚类
原文:Win8 Metro(C#)数字图像处理--2.52图像K均值聚类 [函数名称] 图像KMeans聚类 KMeansCluster(WriteableBitmap src,i ...
- Win8 Metro(C#)数字图像处理--2.45图像雾化效果算法
原文:Win8 Metro(C#)数字图像处理--2.45图像雾化效果算法 [函数名称] 图像雾化 AtomizationProcess(WriteableBitmap src,i ...
随机推荐
- C++ windows客户端支持SSL双向认证
C++ windows客户端支持SSL双向认证,服务端是JAVA开发的,使用的证书是jks格式的.C++并不支持JKS格式的证书,所以要用openssl进行转换下. 1. 需要先把jks转成.p12文 ...
- JNI相关使用记录
JNI 工作流程 java层调用system.load方法. 通过classloader拿到了so文件的绝对路径,然后调用nativeload()方法. 通过linux下的dlopen方法,加载并查找 ...
- 一个简单的Web服务器-支持Servlet请求
上接 一个简单的Web服务器-支持静态资源请求,这个服务器可以处理静态资源的请求,那么如何处理Servlet请求的呢? 判断是否是Servlet请求 首先Web服务器需要判断当前请求是否是Servle ...
- python基础[16]——解决django连接mysql数据库报错的问题
Models.py #创建数据表 from django.db import models from django.utils import timezone from tinymce.models ...
- css3新增属性有哪些?css3中常用的新增属性总结
css3新增属性有哪些?来提问这个问题的人都应该知道css3是css的升级版本,那么,css3既然是升级版本,自然是会新增一些属性,接下来本篇文章将给大家介绍关于css3中常用的新增属性. 一.css ...
- 【C++】将调用第三方库的代码封装成动态库供上层调用
需求分析 Java应用中需要调用C++的程序,而这个C++的程序中需要引入一个第三方静态库.所以需要将该程序编译成一个动态库文件(.so)供Java调用. 步骤 使用CLion创建一个动态库的项目,会 ...
- WeihanLi.Npoi 1.7.0 更新
WeihanLi.Npoi 1.7.0 更新介绍 Intro 昨天晚上发布了 WeihanLi.Npoi 1.7.0 版本,增加了 ColumnInputFormatter/ColumnOutputF ...
- 1068 万绿丛中一点红 (20分)C语言
对于计算机而言,颜色不过是像素点对应的一个 24 位的数值.现给定一幅分辨率为 M×N 的画,要求你找出万绿丛中的一点红,即有独一无二颜色的那个像素点,并且该点的颜色与其周围 8 个相邻像素的颜色差充 ...
- Redis 持久化的两种方案
reids是一个key-value存储系统,为了保证效率,缓存在内存中,但是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,以保证数据的持久化. 所以:redis是一个支持持 ...
- 51nod 1086背包问题V2 (完全背包模板题)
1086 背包问题 V2 1 秒 131,072 KB 20 分 3 级题 题目描述 有N种物品,每种物品的数量为C1,C2......Cn.从中任选若干件放在容量为W的背包里,每种物品的体积为W1, ...