broadcasting是tensorflow中tensor维度扩张的最常用的手段,指对某一个维度上重复N多次,虽然它呈现数据已被扩张,但不会复制数据。

可以这样理解,对 [b,784]@[784,10]+[10]这样一个操作([10]可以理解为偏置项),那么原式可以化为[b,10]+[10],但是[b,10]和[10]这两个tensor是不能直接相加的,两者必须化为相一致维度的单元才能相加,即,把[10]扩张为[b,10],两者才能相加,而broadcasting做的就是这样一件事。

如果上面的说法仍然不好理解,我们再换一个说法,对于两个tensor,tensor1:[4,16,16,32](4维)和tensor2:[32](1维),我们将两个不同维度的张量右对齐即4-null,16-null,16-null,32-32,然后从右往前,即从小维度往大维度延伸,如果tensor2在相应的维度上没有维度,我们就插入一个维度,即,从[32]变为[1,1,1,32],然后把插入的维度扩张成相同的size,即把[1,1,1,32]扩张为[4,16,16,32]

又如,对tensor[4,32,32,3],要给它加一个偏置项b:[3],那么这个b的扩张过程为[3]→[1,1,1,3]→[4,32,32,3]

又如,现有两个tensor,tensor1:[4,1],tensor2:[1,3],两个tensor相加,则变化为,[4,1]→[4,3],[1,3]→[4,3]

又如,现有两个tensor,tensor1:[4],tensor2:[1,3],两个tensor不能相加,因为我们扩张时遵循的是右对齐原则,即[4]将要变成[1,4],而[1,4]和[1,3]是不能相加的

那么broadcasting有什么实际意义呢?

举个实际例子,对于[classes,students,scores]这样一个tensor概念(前文已经提过),由于期末考试某科难度提高,我们需要提高它的基准分,因此我们构建一个偏置项[scores],让它与前者相加,这时候通过broadcasting我们就可以让高维元素普适我们的[scores]操作(因为单纯的[scores]是没有学生和班级这样的概念的,通过broadcasting可以看成是对这种概念的补充),即,给所有班级的所有学生的成绩都加上这样的一个偏置。

开头我们提到broadcasting可以实现数据的维度扩张但不会复制数据,意思是,对于[b,10]+[10]这样一个操作,虽然经过broadcasting我们将[10]理解为了一个[b,10](扩张),但其实际的数据shape仍然是[10],如果不使用broadcasting而是用我们前面提到过的维度变换的方法,过程是这个样子的:首先使用expand方法在axis=0的地方插入一个维度使其变为[1,10],然后使用tf.tile方法对[1,10]复制b次,使其变为[b,10],经过这样一个数据变换后,原来的偏置就真的变成了shape为[b,10]的tensor。对比之下可以看到,如果不指定高维度的配置,只给定低维度的概念那么broadcasting默认会进行高维的适配和扩张,而且broadcasting使用更加的简洁,同时可以节省大量的存储空间(因为并没有复制数据)。

使用方法只需要调用tf.broadcast_to函数即可,代码很简单,不再给出。

tensor的维度扩张的手段--Broadcasting的更多相关文章

  1. Pytorch 中 tensor的维度拼接

    torch.stack() 和 torch.cat() 都可以按照指定的维度进行拼接,但是两者也有区别,torch.satck() 是增加新的维度进行堆叠,即其维度拼接后会增加一个维度:而torch. ...

  2. pytorch 调整tensor的维度位置

    target.permute([0, 3, 1, 2]) 一定要使用permute以及中括号 一些在我这里没起到作用的网上的例子: 1. https://blog.csdn.net/zouxiaolv ...

  3. [TensorFlow]Tensor维度理解

    http://wossoneri.github.io/2017/11/15/[Tensorflow]The-dimension-of-Tensor/ Tensor维度理解 Tensor在Tensorf ...

  4. tensorflow中tensor的静态维度和动态维度

    tf中使用张量(tensor)这种数据结构来表示所有的数据,可以把张量看成是一个具有n个维度的数组或列表,张量会在各个节点之间流动,参与计算. 张量具有静态维度和动态维度. 在图构建过程中定义的张量拥 ...

  5. tensor维度变换

    维度变换是tensorflow中的重要模块之一,前面mnist实战模块我们使用了图片数据的压平操作,它就是维度变换的应用之一. 在详解维度变换的方法之前,这里先介绍一下View(视图)的概念.所谓Vi ...

  6. Pytorch Tensor 维度的扩充和压缩

    维度扩展 x.unsqueeze(n) 在 n 号位置添加一个维度 例子: import torch x = torch.rand(3,2) x1 = x.unsqueeze(0) # 在第一维的位置 ...

  7. Pytorch-tensor的维度变化

    引言 本篇介绍tensor的维度变化. 维度变化改变的是数据的理解方式! view/reshape:大小不变的条件下,转变shape squeeze/unsqueeze:减少/增加维度 transpo ...

  8. pytorch张量数据索引切片与维度变换操作大全(非常全)

    (1-1)pytorch张量数据的索引与切片操作1.对于张量数据的索引操作主要有以下几种方式:a=torch.rand(4,3,28,28):DIM=4的张量数据a(1)a[:2]:取第一个维度的前2 ...

  9. Pytorch | 详解Pytorch科学计算包——Tensor

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Pytorch专题的第二篇,我们继续来了解一下Pytorch中Tensor的用法. 上一篇文章当中我们简单介绍了一下如何创建一个Ten ...

随机推荐

  1. CCF_ 201403-2_窗口

    用deque模拟. #include<iostream> #include<cstdio> #include<deque> using namespace std; ...

  2. 2020牛客寒假算法基础集训营4 B:括号序列

    B : 括号序列 考察点 : 栈 坑点 : 只有栈空时才是合法的 Code: #include <stack> #include <cstdio> #include <s ...

  3. python-nmap 使用

    安装 [root@localhost ~]# yum -y install nmap [root@localhost ~]# pip install python-nmap 使用 import nma ...

  4. Linux 服务器注意事项

    1.创建时  数据文件一定分盘挂载 2.LVM 虚拟磁盘卷是否创建    有争议??? 3.hosts 文件 最好添加本机映射          主机名  127.0.0.1      4.iptab ...

  5. Linux 配置ip 子接口 多网卡绑定

    linux系统配置ip地址,图形化界面略过,这里只介绍文本行.做以下设置注意是否有此权限 查看当前路由及网关信息: [root@localhost ~]# netstat -r Kernel IP r ...

  6. linux系统的启动流程梳理

    1. 不同版本的linux系统的启动流程 1.1 centos6.x系统的启动流程 其详细启动步骤如下: 1)开机,BIOS自检,检查各个硬件是否正常 2)读取硬盘MBR信息,引导系统启动 3)加载g ...

  7. 实训第八天 有关python orm 的学习记录 常用方法02

    继续沿用第七天数据库:def test2(request): # 1.xxx__lt 小于 :查询出年龄小于22的所有 ret=models.Person.objects.filter(age__lt ...

  8. Web移动前端开发-——bootstarp响应式框架

    移动端WEB开发之响应式布局 1.0 响应式开发原理 1.1 响应式开发原理 就是使用媒体查询针对不同宽度的设备进行布局和样式的设置,从而适配不同设备的目的. 设备的划分情况: 小于768的为超小屏幕 ...

  9. 「Flink」事件时间与水印

    我们先来以滚动时间窗口为例,来看一下窗口的几个时间参数与Flink流处理系统时间特性的关系. 获取窗口开始时间Flink源代码 获取窗口的开始时间为以下代码: org.apache.flink.str ...

  10. C#24种设计模式汇总

    创建型:6 01. 简单工厂模式 08. 工厂方法模式 09. 原型模式 13. 建造者模式 15. 抽象工厂模式 21. 单例模式 结构型:7 06. 装饰模式 07. 代理模式 12. 外观模式 ...