题意:你的英雄一开始血量为p,你还有m个队友,血量无穷。血量上限为n,下限为0。如果血量满了就不能加血。每次启动操作,随机给m+1个英雄加1点血,然后等概率随机k次每次对于英雄扣1点血。求期望操作几次你的英雄没血?

n,m,p<=1500.

标程:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
const int N=;
int n,p,m,k,f[N],inv[N],g[N][N],ans[N];
int ksm(int x,int y)
{
int res=;
while (y) {if (y&) res=(ll)res*x%mod; y>>=;x=(ll)x*x%mod;}
return res;
}
int Inv(int x){return ksm(x,mod-);}
void gauss()
{
for (int i=n;i>=;i--)
{
if (g[i][i]==&&g[i-][i]==) {puts("-1");return;}
if (g[i][i]==)
{
for (int j=;j<=i;j++) swap(g[i][j],g[i-][j]);
swap(g[i][n+],g[i-][n+]);
}
else
{
if (!g[i-][i]) continue;
int v=(ll)g[i-][i]*Inv(g[i][i])%mod;
for (int j=;j<=i;j++)
g[i-][j]=((ll)g[i-][j]-(ll)g[i][j]*v%mod+mod)%mod;
g[i-][n+]=((ll)g[i-][n+]-(ll)g[i][n+]*v%mod+mod)%mod;
}
}
for (int i=;i<=p;i++)
{
ans[i]=g[i][n+];
for (int j=;j<i;j++)
ans[i]=((ll)ans[i]-(ll)ans[j]*g[i][j]%mod+mod)%mod;
ans[i]=(ll)ans[i]*Inv(g[i][i])%mod;
if (!ans[i]) {puts("-1");return;}
}
printf("%d\n",ans[p]);
}
void init()
{
memset(g,,sizeof(g));
int tmp=,c=,in,inn;in=inn=Inv(m+);
for (int i=;i<=min(n,k);i++)
{
c=(ll)c*(k-i+)%mod*inv[i]%mod;
tmp=(ll)tmp*in%mod;
f[i]=(ll)c*tmp%mod;
}
in=(ll)m*in%mod;tmp=ksm(in,k-min(n,k));
f[]=;
for (int i=min(n,k);i>=;i--)
f[i]=(ll)f[i]*tmp%mod,tmp=(ll)tmp*in%mod; for (int i=;i<=n;i++)
{
if (i==n) in=,inn=;
for (int j=max(i-k,);j<=i;j++)
{
g[i][j]=((ll)g[i][j]+(ll)f[i-j]*in%mod)%mod;
if (j+<=n) g[i][j+]=(ll)f[i-j]*inn%mod;
}
g[i][i]=((ll)g[i][i]-+mod)%mod;g[i][n+]=mod-;
}
}
int main()
{
int T;scanf("%d",&T);
inv[]=inv[]=; for (int i=;i<=;i++) inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
while (T--) {
scanf("%d%d%d%d",&n,&p,&m,&k);
init();gauss();
}
return ;
}

易错点:1.注意对无解的特判,如果有概率为0就是-1。

题解:dp+高斯消元

一般dp式子:dp[i]表示还剩下i滴血直到英雄死去的期望操作次数。分自己的英雄是否加血讨论。f[i]表示血量减少i的概率,可以预处理。

$dp[i]=(\sum_{j=i-k}^{i}dp[j]*f[i-j]*m/(m+1)+\sum_{j=i-k+1}^{i+1}dp[j]*f[i+1-j]*1/(m+1))+1$。

但是由于有dp[i+1],难以递推。考虑设未知数进行高斯消元。高斯消元不是n^3*logn的吗?

由于这个矩阵写出来是阶梯状往右,第i行的最右边元素只到i+1,所以只用下面一行来减去它,化成右下三角矩阵求即可。时间复杂度O(n^2(*logn))。

或者直接用前n-1个式子写出dp[i]=Ax+B的表达式,然后再全部代入最后一个dp[n]=....的式子中,解Ax+B=A'x+B'即可。

loj2513 治疗之雨的更多相关文章

  1. 【BZOJ5292】[BJOI2018]治疗之雨(高斯消元)

    [BZOJ5292][BJOI2018]治疗之雨(高斯消元) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示剩余\(i\)点生命时的期望死亡的次数. 考虑打\(k\)次下来脸上被打了\(i\)下的 ...

  2. BZOJ5292 & 洛谷4457 & LOJ2513:[BJOI2018]治疗之雨——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5292 https://www.luogu.org/problemnew/show/P4457 ht ...

  3. 【LOJ2513】「BJOI2018」治疗之雨

    题意 你现在有 \(m+1\) 个数:第一个为 \(p\) ,最小值为 \(0\) ,最大值为 \(n\) :剩下 \(m\) 个都是无穷,没有最小值或最大值.你可以进行任意多轮操作,每轮操作如下: ...

  4. 【LOJ】#2513. 「BJOI2018」治疗之雨

    题解 具体就是列一个未知数方程\(dp[i]\)表示有\(i\)滴血的时候期望多少轮 \(dp[i] = 1 + \sum_{j = 1}^{i + 1} a_{i,j}dp[j]\) \(dp[n] ...

  5. [BZOJ5292][BJOI2018]治疗之雨(概率DP+高斯消元)

    https://blog.csdn.net/xyz32768/article/details/83217209 不难找到DP方程与辅助DP方程,发现DP方程具有后效性,于是高斯消元即可. 但朴素消元显 ...

  6. luoguP4457 [BJOI2018]治疗之雨 概率期望 + 高斯消元

    应该是最后一道紫色的概率了....然而颜色啥也代表不了.... 首先看懂题意: 你现在有$p$点体力,你的体力上限为$n$ 在一轮中, 1.如果你的体力没有满,你有$\frac{1}{m + 1}$的 ...

  7. [BJOI2018]治疗之雨

    题目 我还没疯 发现如果我们将血量抽象成点,一轮操作抽象成图上的一条边,我们如果能求出每一条边的概率,我们就能搞一下这道题 假设我们求出了这个图\(E\),设\(dp_i\)表示从\(i\)点到达\( ...

  8. [BZOJ5292] [BJOI2018]治疗之雨

    题目链接 BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=5292 洛谷:https://www.luogu.org/problemnew/show ...

  9. 洛谷P4457/loj#2513 [BJOI2018]治疗之雨(高斯消元+概率期望)

    题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\( ...

随机推荐

  1. Dll注入技术之APC注入

    APC注入的原理是利用当线程被唤醒时APC中的注册函数会被执行的机制,并以此去执行我们的DLL加载代码,进而完成DLL注入的目的,其具体流程如下:     1)当EXE里某个线程执行到SleepEx( ...

  2. 转-pycharm建立项目

    转自:https://blog.csdn.net/m0_37544464/article/details/79171913 本文针对环境已经配置好的Pycharm建立新项目 1.第一步 2.第二步 在 ...

  3. Function(高阶函数式编程)

    Function一个可以进行高阶函数式编程的模块. chain def chain[a](fs: Seq[(a) ? a]): (a) ? a 把一些列的方法串起来,挨个执行,每个方法的结果,回作为下 ...

  4. mybatis 处理CLOB/BLOB类型数据

    BLOB和CLOB都是大字段类型. BLOB是按二进制来存储的,而CLOB是可以直接存储文字的. 通常像图片.文件.音乐等信息就用BLOB字段来存储,先将文件转为二进制再存储进去.文章或者是较长的文字 ...

  5. vue 报错:Cannot read property '__ob__' of undefined

    我的原因:引入组件后未注册 <script> import ComFirst from "../../components/ComFirst.vue" import C ...

  6. JAVA读取PROPERTIES文件方式一

    import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.i ...

  7. 获取的Json数据需要去掉特殊符号

    我们平时在后台代码里面获取的Json数据如下情况: json会包含\r ,\n, \  等一些特殊的符号.下面我们就写一个方法去消除这些特殊符号,在代码里获取到纯净的json. public stat ...

  8. html编写的日历

    1.html (1) <html> <head> <meta http-equiv="Content-Type" content="text ...

  9. Android开发 AAC的ADTS头解析[转载]

    原文地址:https://www.jianshu.com/p/b5ca697535bd 1. ADTS(Audio Data Transport Stream)头之于AAC AAC音频文件的每一帧都由 ...

  10. [转]spring入门(六)【springMVC中各数据源配置】

    在使用spring进行javaWeb开发的过程中,需要和数据库进行数据交换,为此要经常获取数据库连接,使用JDBC的方式获取数据库连接,使用完毕之后再释放连接,这种过程对系统资源的消耗无疑是很大的,这 ...