loj2513 治疗之雨
题意:你的英雄一开始血量为p,你还有m个队友,血量无穷。血量上限为n,下限为0。如果血量满了就不能加血。每次启动操作,随机给m+1个英雄加1点血,然后等概率随机k次每次对于英雄扣1点血。求期望操作几次你的英雄没血?
n,m,p<=1500.
标程:
- #include<bits/stdc++.h>
- using namespace std;
- typedef long long ll;
- const int mod=1e9+;
- const int N=;
- int n,p,m,k,f[N],inv[N],g[N][N],ans[N];
- int ksm(int x,int y)
- {
- int res=;
- while (y) {if (y&) res=(ll)res*x%mod; y>>=;x=(ll)x*x%mod;}
- return res;
- }
- int Inv(int x){return ksm(x,mod-);}
- void gauss()
- {
- for (int i=n;i>=;i--)
- {
- if (g[i][i]==&&g[i-][i]==) {puts("-1");return;}
- if (g[i][i]==)
- {
- for (int j=;j<=i;j++) swap(g[i][j],g[i-][j]);
- swap(g[i][n+],g[i-][n+]);
- }
- else
- {
- if (!g[i-][i]) continue;
- int v=(ll)g[i-][i]*Inv(g[i][i])%mod;
- for (int j=;j<=i;j++)
- g[i-][j]=((ll)g[i-][j]-(ll)g[i][j]*v%mod+mod)%mod;
- g[i-][n+]=((ll)g[i-][n+]-(ll)g[i][n+]*v%mod+mod)%mod;
- }
- }
- for (int i=;i<=p;i++)
- {
- ans[i]=g[i][n+];
- for (int j=;j<i;j++)
- ans[i]=((ll)ans[i]-(ll)ans[j]*g[i][j]%mod+mod)%mod;
- ans[i]=(ll)ans[i]*Inv(g[i][i])%mod;
- if (!ans[i]) {puts("-1");return;}
- }
- printf("%d\n",ans[p]);
- }
- void init()
- {
- memset(g,,sizeof(g));
- int tmp=,c=,in,inn;in=inn=Inv(m+);
- for (int i=;i<=min(n,k);i++)
- {
- c=(ll)c*(k-i+)%mod*inv[i]%mod;
- tmp=(ll)tmp*in%mod;
- f[i]=(ll)c*tmp%mod;
- }
- in=(ll)m*in%mod;tmp=ksm(in,k-min(n,k));
- f[]=;
- for (int i=min(n,k);i>=;i--)
- f[i]=(ll)f[i]*tmp%mod,tmp=(ll)tmp*in%mod;
- for (int i=;i<=n;i++)
- {
- if (i==n) in=,inn=;
- for (int j=max(i-k,);j<=i;j++)
- {
- g[i][j]=((ll)g[i][j]+(ll)f[i-j]*in%mod)%mod;
- if (j+<=n) g[i][j+]=(ll)f[i-j]*inn%mod;
- }
- g[i][i]=((ll)g[i][i]-+mod)%mod;g[i][n+]=mod-;
- }
- }
- int main()
- {
- int T;scanf("%d",&T);
- inv[]=inv[]=; for (int i=;i<=;i++) inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
- while (T--) {
- scanf("%d%d%d%d",&n,&p,&m,&k);
- init();gauss();
- }
- return ;
- }
易错点:1.注意对无解的特判,如果有概率为0就是-1。
题解:dp+高斯消元
一般dp式子:dp[i]表示还剩下i滴血直到英雄死去的期望操作次数。分自己的英雄是否加血讨论。f[i]表示血量减少i的概率,可以预处理。
$dp[i]=(\sum_{j=i-k}^{i}dp[j]*f[i-j]*m/(m+1)+\sum_{j=i-k+1}^{i+1}dp[j]*f[i+1-j]*1/(m+1))+1$。
但是由于有dp[i+1],难以递推。考虑设未知数进行高斯消元。高斯消元不是n^3*logn的吗?
由于这个矩阵写出来是阶梯状往右,第i行的最右边元素只到i+1,所以只用下面一行来减去它,化成右下三角矩阵求即可。时间复杂度O(n^2(*logn))。
或者直接用前n-1个式子写出dp[i]=Ax+B的表达式,然后再全部代入最后一个dp[n]=....的式子中,解Ax+B=A'x+B'即可。
loj2513 治疗之雨的更多相关文章
- 【BZOJ5292】[BJOI2018]治疗之雨(高斯消元)
[BZOJ5292][BJOI2018]治疗之雨(高斯消元) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示剩余\(i\)点生命时的期望死亡的次数. 考虑打\(k\)次下来脸上被打了\(i\)下的 ...
- BZOJ5292 & 洛谷4457 & LOJ2513:[BJOI2018]治疗之雨——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5292 https://www.luogu.org/problemnew/show/P4457 ht ...
- 【LOJ2513】「BJOI2018」治疗之雨
题意 你现在有 \(m+1\) 个数:第一个为 \(p\) ,最小值为 \(0\) ,最大值为 \(n\) :剩下 \(m\) 个都是无穷,没有最小值或最大值.你可以进行任意多轮操作,每轮操作如下: ...
- 【LOJ】#2513. 「BJOI2018」治疗之雨
题解 具体就是列一个未知数方程\(dp[i]\)表示有\(i\)滴血的时候期望多少轮 \(dp[i] = 1 + \sum_{j = 1}^{i + 1} a_{i,j}dp[j]\) \(dp[n] ...
- [BZOJ5292][BJOI2018]治疗之雨(概率DP+高斯消元)
https://blog.csdn.net/xyz32768/article/details/83217209 不难找到DP方程与辅助DP方程,发现DP方程具有后效性,于是高斯消元即可. 但朴素消元显 ...
- luoguP4457 [BJOI2018]治疗之雨 概率期望 + 高斯消元
应该是最后一道紫色的概率了....然而颜色啥也代表不了.... 首先看懂题意: 你现在有$p$点体力,你的体力上限为$n$ 在一轮中, 1.如果你的体力没有满,你有$\frac{1}{m + 1}$的 ...
- [BJOI2018]治疗之雨
题目 我还没疯 发现如果我们将血量抽象成点,一轮操作抽象成图上的一条边,我们如果能求出每一条边的概率,我们就能搞一下这道题 假设我们求出了这个图\(E\),设\(dp_i\)表示从\(i\)点到达\( ...
- [BZOJ5292] [BJOI2018]治疗之雨
题目链接 BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=5292 洛谷:https://www.luogu.org/problemnew/show ...
- 洛谷P4457/loj#2513 [BJOI2018]治疗之雨(高斯消元+概率期望)
题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\( ...
随机推荐
- go modules学习
https://github.com/golang/go/wiki/Modules https://tonybai.com/2018/07/15/hello-go-module/ https://ww ...
- slot 的简单用法
注:默认在父组件调用子组件时<SlotChild></SlotChild>中文字不会显示.但是在子组件加入<slot></slot>后,<Slot ...
- Flink 1.6.0 Windows操作
原文连接 https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/stream/operators/windows.html W ...
- AtCoder ABC 126F XOR Matching
题目链接:https://atcoder.jp/contests/abc126/tasks/abc126_f 题目大意 给定两个整数 M 和 K ,用小于 2M 的的所有自然数,每个两个,用这些数排成 ...
- solr 查询同一个core 的关联字段
实现一个core里面多个字段的关联查询: 应用场景是: 词, 句子,文章 希望通过查询实现词,句子,文章里面共同有的关键字 private static CloudSolrServer cloudSo ...
- git mac安装
1.git安装包安装 去官网下载最行的git版本 安装即可 https://git-scm.com/download/mac 但是一般的git仓库需要sshkey来做验证 下面奉上具体的命令: 需要生 ...
- Hadoop Tez框架
- vue cli3使用webpack4打包优化
去掉console.log,以及开启gzip const CompressionPlugin = require('compression-webpack-plugin');//引入gzip压缩插件 ...
- JS 实现省市联动
使用 JavaScript 实现选择省份,后面联动改变成相应省份下的市 原理很简单: 首先创建两个select下拉框(省.市) 初始化的时候让省都显示出来,市为空 ................. ...
- Monkey 稳定性测试
学习网址: https://blog.csdn.net/lucytan01/article/details/79958727 https://blog.csdn.net/hebbely/article ...