题目链接:

神仙题QAQ

题目分析:

概率期望题是不可能会的,一辈子都不可能会的QAQ

这个题也太仙了

首先明确一下题意里面我感觉没太说清楚的地方,这里是抽到第\(i\)次要\(i\)元钱,不是抽到第\(i\)种不然就是一眼题了

我们定义两个数组,\(f[i]\)和\(g[i]\),分别表示现在取到第\(i\)张,要取完剩下的期望次数,以及现在取到第\(i\)张,要取完剩下的期望价格

对于\(f[i]\),首先显然\(f[n] = 0\), 然后考虑如何转移

抽一次有两种情况,抽到有的和没有的,抽到已经有的概率是\(\frac{i}{n}\),期望是\(\frac{i}{n} * f[i]\),抽到没有的概率是\(\frac{n - i}{n}\),期望是\(\frac{n-i}{n} * f[i + 1]\),然后算上自己的期望为\(1\)

于是有状态转移方程:\(f[i] = \frac{i}{n} * f[i] + \frac{n-i}{n} * f[i + 1] + 1\)

化简一下得到\(f[i] = f[i + 1] + \frac{n}{n - i}\)


博主要从机房回家了QAQ回去继续写

好我回家了,继续


对于\(g[i]\),首先显然\(g[n] = 0\), 然后考虑如何转移

抽一次有两种情况,抽到有的和没有的,抽到已经有的概率是\(\frac{i}{n}\),期望是\(\frac{i}{n} * (g[i] + f[i] + 1)\),抽到没有的概率是\(\frac{n - i}{n}\),期望是\(\frac{n-i}{n} * (g[i + 1] + f[i + 1] + 1)\)

于是有状态转移方程:\(g[i] = \frac{i}{n} * (g[i] + f[i] + 1) + \frac{n-i}{n} * (g[i + 1] + f[i + 1] + 1)\)

化简一下得到\(g[i] = \frac{i}{n - i} * f[i] + \frac{n}{n - i} + g[i + 1] + f[i + 1]\)

然后我们先跑\(f\)数组,再用\(f\)数组更新\(g\)数组就\(ok\)

就一个感想,这是怎么想到的,这又是怎么想到的

题还是做太少啦

代码:

#include <bits/stdc++.h>
#define N (10000 + 10)
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
return cnt * f;
}
int n;
double f[N], g[N];
signed main() {
n = read();
f[n] = 0, g[n] = 0;
for (register int i = n - 1; ~i; --i) {
f[i] = f[i + 1] + 1.0 * n / (1.0 * (n - i));
g[i] = 1.0 * i / (1.0 * (n - i)) * f[i] + 1.0 * n / (1.0 *(n - i)) + g[i + 1] + f[i + 1];
}
printf("%.2lf", g[0]);
return 0;
}

洛谷P4550 【收集邮票】的更多相关文章

  1. bzoj1426 (洛谷P4550) 收集邮票——期望

    题目:https://www.luogu.org/problemnew/show/P4550 推式子……:https://blog.csdn.net/pygbingshen/article/detai ...

  2. 洛谷P4550 收集邮票(概率期望)

    传送门 神仙题啊……这思路到底是怎么来的…… ps:本题是第$k$次买邮票需要$k$元,而不是买的邮票标号为$k$时花费$k$元 我们设$g[i]$表示现在有$i$张,要买到$n$张的期望张数,设$P ...

  3. [洛谷P4550]收集邮票

    题目大意:有$n(n\leqslant10^4)$个物品,第$i$次会从这$n$个物品中随机获得一个,并付出$i$的代价,问获得所有的$n$个物品的代价的期望. 题解:令$f_i$表示现在已经获得了$ ...

  4. 洛谷 P4538 收集邮票

    题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所 ...

  5. bzoj1426(洛谷4550)收集邮票

    题目:https://www.luogu.org/problemnew/show/P4550 全靠看TJ.怎么办?可是感觉好难呀. 首先设出 f[i] 为“买了 i 种,还要买到n种的期望次数”,s[ ...

  6. P4550 收集邮票

    P4550 收集邮票 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由 ...

  7. P4550 收集邮票-洛谷luogu

    传送门 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢 ...

  8. 题解 洛谷P4550/BZOJ1426 【收集邮票】

    这显然是一道概率的题目(废话) 设发\(f[i]\)表示买到第\(i\)张邮票还需要购买的期望次数,\(g[i]\)表示买到第\(i\)张邮票还需要期望花费的钱. 那么答案显然为\(g[0]\),我们 ...

  9. 【洛谷】P2725 邮票 Stamps(dp)

    题目背景 给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票.计算从 1 到 M 的最大连续可贴出的邮资. 题目描述 例如,假设有 1 分和 3 ...

随机推荐

  1. ps-手捧城堡滴水云雾图

    1打开背景图 置入第二张图片 栅格化-加入蒙版-渐变 置入第三张图片 栅格化-用快速选择工具选取-加入蒙版 置入第四张图片 栅格化-调整图层-点击城堡建立蒙版-点击手的蒙版 ctrl-点击城堡的蒙版- ...

  2. java-day17

    软件结构:C/S客户端和服务器结构,B/S浏览器和服务器结构 网络通信协议 TCP:传输控制协议,面向连接的通信协议,即传输数据之前,发送端和接收端建立逻辑连接,然后再传输数据. 三次握手 UDP:用 ...

  3. springboot项目中使用设计模式一策略模式

    策略模式: 使用常用,支付,之前做了微信支付,支付宝支付,然后另外一个同事写了一个银联支付,那么如果代码方法一起就会导致代码不是很好操作所以,采用策略模式进行,同事只需要写一个实现类,就可以了, 在协 ...

  4. python中logging使用方法

    1.logging提供了一组便利的函数,用来做简单的日志.它们是 debug(). info(). warning(). error() 和 critical(). 1.1logging以严重程度递增 ...

  5. ci用户登录

    [list] 预先加载数据库操作类和Session类 即在autoload.php中,$autoload['libraries'] = array('database', 'session'); a. ...

  6. python 随便笔记

    1 判断字符串中是否有数字 i.isdigit()==True else False #判断是否是数字i.isalpha()==True else False #判断是否是字母 i.isspace() ...

  7. JavaScript 点击事件的三种写法

    嵌入式 <button οnclick='alert("hello")'>点击按钮</button> 脚本模型 btn.onclick=function() ...

  8. spring整合shiro框架

    上一篇文章已经对shiro框架做了一定的介绍,这篇文章讲述使用spring整合shiro框架,实现用户认证已经权限控制 1.搭建环境 这里不在赘述spring环境的搭建,可以简单的搭建一个ssm框架, ...

  9. mongodb操作指令(一):数据库,集合,文档

    数据库 查看所有数据库 show dbs 查看当前数据库 db 创建使用数据库use runoob 删除数据库 db.dropDatabase() 集合 创建集合db.createCollection ...

  10. Http学习(一)

    HTTP 超文本传输协议 综述: HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则.计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从 ...