题目链接:

神仙题QAQ

题目分析:

概率期望题是不可能会的,一辈子都不可能会的QAQ

这个题也太仙了

首先明确一下题意里面我感觉没太说清楚的地方,这里是抽到第\(i\)次要\(i\)元钱,不是抽到第\(i\)种不然就是一眼题了

我们定义两个数组,\(f[i]\)和\(g[i]\),分别表示现在取到第\(i\)张,要取完剩下的期望次数,以及现在取到第\(i\)张,要取完剩下的期望价格

对于\(f[i]\),首先显然\(f[n] = 0\), 然后考虑如何转移

抽一次有两种情况,抽到有的和没有的,抽到已经有的概率是\(\frac{i}{n}\),期望是\(\frac{i}{n} * f[i]\),抽到没有的概率是\(\frac{n - i}{n}\),期望是\(\frac{n-i}{n} * f[i + 1]\),然后算上自己的期望为\(1\)

于是有状态转移方程:\(f[i] = \frac{i}{n} * f[i] + \frac{n-i}{n} * f[i + 1] + 1\)

化简一下得到\(f[i] = f[i + 1] + \frac{n}{n - i}\)


博主要从机房回家了QAQ回去继续写

好我回家了,继续


对于\(g[i]\),首先显然\(g[n] = 0\), 然后考虑如何转移

抽一次有两种情况,抽到有的和没有的,抽到已经有的概率是\(\frac{i}{n}\),期望是\(\frac{i}{n} * (g[i] + f[i] + 1)\),抽到没有的概率是\(\frac{n - i}{n}\),期望是\(\frac{n-i}{n} * (g[i + 1] + f[i + 1] + 1)\)

于是有状态转移方程:\(g[i] = \frac{i}{n} * (g[i] + f[i] + 1) + \frac{n-i}{n} * (g[i + 1] + f[i + 1] + 1)\)

化简一下得到\(g[i] = \frac{i}{n - i} * f[i] + \frac{n}{n - i} + g[i + 1] + f[i + 1]\)

然后我们先跑\(f\)数组,再用\(f\)数组更新\(g\)数组就\(ok\)

就一个感想,这是怎么想到的,这又是怎么想到的

题还是做太少啦

代码:

#include <bits/stdc++.h>
#define N (10000 + 10)
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
return cnt * f;
}
int n;
double f[N], g[N];
signed main() {
n = read();
f[n] = 0, g[n] = 0;
for (register int i = n - 1; ~i; --i) {
f[i] = f[i + 1] + 1.0 * n / (1.0 * (n - i));
g[i] = 1.0 * i / (1.0 * (n - i)) * f[i] + 1.0 * n / (1.0 *(n - i)) + g[i + 1] + f[i + 1];
}
printf("%.2lf", g[0]);
return 0;
}

洛谷P4550 【收集邮票】的更多相关文章

  1. bzoj1426 (洛谷P4550) 收集邮票——期望

    题目:https://www.luogu.org/problemnew/show/P4550 推式子……:https://blog.csdn.net/pygbingshen/article/detai ...

  2. 洛谷P4550 收集邮票(概率期望)

    传送门 神仙题啊……这思路到底是怎么来的…… ps:本题是第$k$次买邮票需要$k$元,而不是买的邮票标号为$k$时花费$k$元 我们设$g[i]$表示现在有$i$张,要买到$n$张的期望张数,设$P ...

  3. [洛谷P4550]收集邮票

    题目大意:有$n(n\leqslant10^4)$个物品,第$i$次会从这$n$个物品中随机获得一个,并付出$i$的代价,问获得所有的$n$个物品的代价的期望. 题解:令$f_i$表示现在已经获得了$ ...

  4. 洛谷 P4538 收集邮票

    题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所 ...

  5. bzoj1426(洛谷4550)收集邮票

    题目:https://www.luogu.org/problemnew/show/P4550 全靠看TJ.怎么办?可是感觉好难呀. 首先设出 f[i] 为“买了 i 种,还要买到n种的期望次数”,s[ ...

  6. P4550 收集邮票

    P4550 收集邮票 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由 ...

  7. P4550 收集邮票-洛谷luogu

    传送门 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢 ...

  8. 题解 洛谷P4550/BZOJ1426 【收集邮票】

    这显然是一道概率的题目(废话) 设发\(f[i]\)表示买到第\(i\)张邮票还需要购买的期望次数,\(g[i]\)表示买到第\(i\)张邮票还需要期望花费的钱. 那么答案显然为\(g[0]\),我们 ...

  9. 【洛谷】P2725 邮票 Stamps(dp)

    题目背景 给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票.计算从 1 到 M 的最大连续可贴出的邮资. 题目描述 例如,假设有 1 分和 3 ...

随机推荐

  1. 《DSP using MATLAB》Problem 8.43

    代码: %% ------------------------------------------------------------------------ %% Output Info about ...

  2. springboot整合thymeleaf手动渲染

    Thymeleaf手动渲染 为提高页面访问速度,可缓存html页面,客户端请求从缓存获取,获取不到再手动渲染 在spring4下 @Autowired ThymeleafViewResolver th ...

  3. spark 变量使用 broadcast、accumulator

    broadcast 官方文档描述: Broadcast a read-only variable to the cluster, returning a [[org.apache.spark.broa ...

  4. TFS 忽略 文件

    原文链接:http://ju.outofmemory.cn/entry/258689 让TFS忽略packages文件夹的更改 很多时候我们需要使用 Nuget 进行包管理,这时在我们的解决方案文件夹 ...

  5. Android开发 解决Installation failed due to XXX 问题

    报错信息 Android studio 安装app的时候以下报错 Installation did not succeed. The application could not be installe ...

  6. CF431E Chemistry Experiment

    题意:有n个试管,有高度为hi的水银.操作1:将试管x中的水银高度改成y.操作2:将体积为v的水注入试管,求水位的高度?n,q<=1e5. 标程: #include<bits/stdc++ ...

  7. Java怎样获取字符串最后出现的位置

    lastIndexOf();表示获取字符串最后出现的位置,倒数的位置 @Test /** * lastIndexOf();//获取字符串最后出现的位置,倒数的位置 * */ public void f ...

  8. [JZOJ1904] 【2010集训队出题】拯救Protoss的故乡

    题目 题目大意 给你一个树形的网络,每条边从父亲流向儿子.根节点为原点,叶子节点流向汇点,容量为无穷大. 可以给一些边扩大容量,最多总共扩大\(m\)容量.每条边的容量有上限. 求扩大容量后最大的最大 ...

  9. [JZOJ6271] 2019.8.4【NOIP提高组A】锻造

    题目 题目大意 武器的每个级别有固定的两种属性\(b_i\)和\(c_i\) 可以用\(a\)的代价得到一把\(0\)级的武器. 可以将\(x\)级武器和\(y=\max(x-1,0)\)级武器融合锻 ...

  10. Spring+Mybatis常见问题随笔

    错误1:无法绑定指定方法 异常堆栈:org.apache.ibatis.binding.BindingException: Invalid bound statement (not found) 原因 ...