/*
树上莫比乌斯反演
求树上 满足 d|gcd(au,av) gcd(au,av)的对数f(d)
如何求:
建立200000层新图,即对于每个数建立一个新图
在加边时,给gcd(au,av)的约数层的图的uv加边
f[i]表示第i层的满足条件 i | gcd(a[u],a[v]) 的对数,那么求一遍并查集,在合并过程中更新f[i]即可,
同时要注意f[i]初始值为这层的有效结点数量,对应i|gcd(a[u],a[u])这样的情况 然后用莫比乌斯反演来求最后答案g[d]=sigma(u[i]*f[i*d])

*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 200005 int phi[maxn],mu[maxn],prime[maxn],m;
bool vis[maxn];
void init(){//打表mu
phi[]=mu[]=;
for(int i=;i<maxn;i++){
if(!vis[i]){
mu[i]=-;prime[++m]=i;phi[i]=i-;
}
for(int j=;j<=m;j++){
if(i*prime[j]>=maxn)break;
vis[i*prime[j]]=;
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
mu[i*prime[j]]=;
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-),mu[i*prime[j]]=-mu[i];
}
}
} int n,a[maxn];
long long f[maxn],u[maxn],v[maxn];
vector<int>vec[maxn];//每层的边的下标集合 int F[maxn],size[maxn];
int find(int x){
return F[x]==x?x:F[x]=find(F[x]);
}
void bing(int i,int u,int v){
int t1=find(u),t2=find(v);
if(t1==t2)return;
f[i]+=(long long)size[t1]*size[t2];
size[t1]+=size[t2];F[t2]=t1;
} int main(){
init();
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
for(int j=;j*j<=a[i];j++)
if(a[i]%j==){
f[j]++;
if(a[i]/j!=j)f[a[i]/j]++;
}
}
for(int i=;i<n;i++){//建立2000000层新图
scanf("%d%d",&u[i],&v[i]);
int tmp=__gcd(a[u[i]],a[v[i]]);
for(int j=;j*j<=tmp;j++)
if(tmp%j==){
vec[j].push_back(i);
if(tmp/j!=j)
vec[tmp/j].push_back(i);
}
}
//求并查集
for(int i=;i<=;i++){
for(int j=;j<vec[i].size();j++){//先初始化每层对应的并查集
int uu=u[vec[i][j]],vv=v[vec[i][j]];
F[uu]=uu;F[vv]=vv;
size[uu]=;size[vv]=;
}
for(int j=;j<vec[i].size();j++){//再进行合并求值
int uu=u[vec[i][j]],vv=v[vec[i][j]];
bing(i,uu,vv);
}
}
//反演+输出
for(int d=;d<=;d++){
long long ans=;
for(int i=;i*d<=;i++)
ans+=(long long)mu[i]*f[i*d];
if(ans!=)
cout<<d<<" "<<ans<<'\n';
}
}

树上莫比乌斯反演+分层图并查集——cf990G的更多相关文章

  1. 【bzoj2049】[Sdoi2008]Cave 洞穴勘测——线段树上bfs求可撤销并查集

    题面 2049: [Sdoi2008]Cave 洞穴勘测 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 12030 Solved: 6024 Desc ...

  2. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  3. CSP2019 D1T3 树上的数 (贪心+并查集)

    题解 因为博主退役了,所以题解咕掉了.先放个代码 CODE #include<bits/stdc++.h> using namespace std; const int MAXN = 20 ...

  4. hdu 5458 Stability(树链剖分+并查集)

    Stability Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Total ...

  5. C - BLG POJ - 1417 种类并查集加dp(背包)

    思路:刚看这道题感觉什么都不清楚,人物之间的关系一点也看不出来,都不知道怎么写,连并查集都没看出来,但是你可以仔细分析一下,当输入字符串为“yes”的时候,我们设输入的值为x和y,当x为天使是则由题可 ...

  6. poj 3310(并查集判环,图的连通性,树上最长直径路径标记)

    题目链接:http://poj.org/problem?id=3310 思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径 ...

  7. 【bzoj3362/3363/3364/3365】[Usaco2004 Feb]树上问题杂烩 并查集/树的直径/LCA/树的点分治

    题目描述 农夫约翰有N(2≤N≤40000)个农场,标号1到N,M(2≤M≤40000)条的不同的垂直或水平的道路连结着农场,道路的长度不超过1000.这些农场的分布就像下面的地图一样, 图中农场用F ...

  8. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  9. HDU 2545 树上战争 (并查集+YY)

    题意:给一棵树,如果树上的某个节点被某个人占据,则它的所有儿子都被占据,lxh和pfz初始时分别站在两个节点上,lxh总是先移动 ,谁当前所在的点被另一个人占据,他就输了比赛,问谁能获胜 比较有意思的 ...

随机推荐

  1. node-mysql连接数据库

    const mysql=require('mysql') const con=mysql.createConnection({ host:'localhost', user:'root', passw ...

  2. php 中 instanceof 操作符

    "instanceof"操作符的使用非常简单,它用两个参数来完成其功能.第一个参数是你想要检查的对象,第二个参数是类名(事实上是一个接口名),用于确定是否这个对象是相应类的一个实例 ...

  3. Java多线程常用方法的使用

    Java多线程的常用方法基本分为:获取当前线程的操作,线程休眠sleep()方法,线程让步yield()方法,等待其他线程终止join()方法,线程停止的一系列方法. 一.获取当前线程的操作   1. ...

  4. Java——main()方法

    3.1 main()方法 由于java虚拟机需要调用类的main()方法,所以该方法的访问权限必须是public,又因为java虚拟机在执行main()方法时不必创建对象,所以该方法必须是static ...

  5. 浅析阿里云API网关的产品架构和常见应用场景

    自上世纪60年代计算机网络发展开始,API(Application Programming Interface )随之诞生,API即应用程序接口,是实现系统间衔接的桥梁.时至今日,API市场已经形成了 ...

  6. QT之sqlite连接

    啥也没做,按说明直接啪啪写一堆代码 QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE"); //open datebase ...

  7. Yii2 搜索

    搜索的形式: 第一种,点击空白处: <?php $data=['0'=>'已删除','10'=>'正常','1'=>'锁定']; ?> <table style=' ...

  8. Android onActivityResult()运行时刻的问题

    今天在开发过程中遇到一个很是怪异的问题,就是方法onActivityResult的执行问题,问题是当我从当前的Activity跳转的时候,尚未做任何动作,onActivityResult()就已经执行 ...

  9. (转)OpenFire源码学习之四:openfire的启动流程

    转:http://blog.csdn.net/huwenfeng_2011/article/details/43413233 openfire启动 ServerStarter 启动流程图: 启动的总入 ...

  10. Linux中的网络管理——网络配置及命令

    Linux网络配置 在Linux中配置IP地址的方法有以下这么几种: 图形界面配置IP地址(操作方式如Windows系统配置IP,但在实际生产中,我们并不建议在我们的服务器上安装Linux的图形界面, ...