「BZOJ1005」[HNOI2008] 明明的烦恼

先放几个prufer序列的结论:

Prufer序列是一种对有标号无根树的编码,长度为节点数-2。

具体存在无根树转化为prufer序列和prufer序列转化为无根树两种操作:

无根树转化为prufer序列 1、找到编号最小的度数为1的点 2、删除该节点并在序列中添加与该节点相连的节点的编号 3、重复1,2操作,直到整棵树只剩下两个节点

prufer序列转化为无根树 设prufer序列为M,另一个集合G={1,2…n} 每次提取M中最靠前的元素u与G中不存在与M且最靠前的元素v,将u与v连边,分别在两个集合中删除u、v。 最后G中剩下两个元素,将这两个点连边。

Prufer序列中某个编号出现的次数等于这个编号的节点在无根树中的度数-1 。  一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内

有关性质的应用 n个点构成的无根树的个数: $n^(n-2)$ 确定n个点度数分别为d1,d2…时无根树个数: $(n-2)!/((d1-1)!*(d2-1)!*…)$ n个点的

有标号有根树的个数: $n*n^{n-2}=n^{n-1}$

然后看这个题:

有某些点知道度数,那么先把这些点放到prufer序列中,设num为度数大于0的点数,fnum为已知度数的点出现次数总和,

方案数C_{n-2}^{fnum}*(n-2)!/((d1-1)!*(d2-1)!*…),然后把剩下的序列填满,每个序列有n-num种情况,乘法计数原理成起来即${n-num}^{n-2-fnum}$,最后将两部分乘起来即可。(这个题也用到了高精……)

 #include<algorithm>
#include<cstring>
#include<iostream>
#include<cstdio>
using namespace std;
#define ma(x) memset(x,0,sizeof(x))
int n,d[],num,fnum;
struct sz
{
int a[];
}a;
sz mul(sz &a,int b)
{
sz c;ma(c.a);
c.a[]=a.a[];
for(int i=;i<=a.a[];i++)
c.a[i]=a.a[i]*b;
for(int i=;i<=c.a[];i++)
if(c.a[i]>=)
{
c.a[i+]+=c.a[i]/;
c.a[i]%=;
if(i==c.a[])c.a[]++;
}
return c;
}
sz div(sz &a,int b)
{
sz ans;ma(ans.a);
int yu=;
for(int i=;i<=a.a[];i++)
{
yu=yu*+a.a[i];
if(yu/b>)
{
ans.a[++ans.a[]]=yu/b;
yu%=b;
}
else if(ans.a[])ans.a[]++;
}
return ans;
}
void print(sz &a)
{
for(int i=;i<=a.a[];i++)cout<<a.a[i];
puts("");
}
bool cmp(int a,int b){return a>b;}
signed main()
{
cin>>n;
for(int i=;i<=n;i++)
{
cin>>d[i];
if(d[i]>-)num++;
if(d[i]>=)fnum+=d[i]-;
if((d[i]==&&n!=)||d[i]>=n||(d[i]!=&&n==)){puts("");return ;}
}
a.a[]=a.a[]=;
for(int i=;i<=n-;i++)a=mul(a,i);//(n-2)!
sort(d+,d+n+,cmp);
reverse(a.a+,a.a+a.a[]+);
for(int i=;i<=num;i++)//(d[i]-1)!
for(int j=;j<d[i];j++)
a=div(a,j);
for(int i=;i<=n--fnum;i++)a=div(a,i);//(n-2-fnum)!
reverse(a.a+,a.a+a.a[]+);
for(int i=;i<=n--fnum;i++)
a=mul(a,n-num);
reverse(a.a+,a.a+a.a[]+);
print(a);
}

「BZOJ1005」[HNOI2008] 明明的烦恼的更多相关文章

  1. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  2. 【bzoj1005】[HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4175  Solved: 1660[Submit][Stat ...

  3. 【bzoj1005】 HNOI2008—明明的烦恼

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 (题目链接) 题意 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多 ...

  4. 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度

    题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...

  5. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

  6. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  7. bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)

    1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...

  8. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  9. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

随机推荐

  1. 利用javafx编写一个时钟制作程序

    1.首先创建一个时钟类,用于编写时钟的各种特有属性 package javaclock; /** * * @author admin */import java.util.Calendar;impor ...

  2. 常用命令4-文件搜索命令 2- which

    大家发现,cd 使用whereis和使用which都找不到他所在位置.是因为cd是linux的shell内置命令.那什么是shell,就是当前咱们操作界面.咱们看到的ls等命令都是通过外部安装的,所以 ...

  3. Mac系统常用快捷键大全

    苹果Mac系统常用快捷键有很多,但是很多童鞋对于这些mac快捷键都不是很熟悉,今天小编为大家整理了一份Mac系统常用快捷键大全,大家快收藏起来吧!平时在使用mac系统的时候可以提高不少工作效率哦! M ...

  4. 大数据概念(4V)

  5. Leetcode96.Unique Binary Search Trees不同的二叉搜索树

    给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 假设n个节点存在二叉排序树的 ...

  6. screen 基础用法(转)

    ####################### 屏幕分割 ######################## 1. screen2. Ctrl-a c    # create a new screen3 ...

  7. JavaScript字符串、数组、对象方法总结

    字符串方法 示例字符串: const str = "hello,kitty,hello,vue "; 一.基本方法 charAt(n) 返回指定索引的字符 charCodeAt(n ...

  8. C#中时间差的计算

    /// <summary> /// 已重载.计算两个日期的时间间隔,返回的是时间间隔的日期差的绝对值. /// </summary> /// <param name=&q ...

  9. Redis-cli 命令不能用

    bash: redis-cli: command not found... 环境: Linux7.X 在运行redis-cli命令的时候提示错误: 解决方案: 1. wget http://downl ...

  10. iOS 使用Quartz和OpenGL绘图

    http://blog.csdn.net/coder9999/article/details/7641701 第十二章 使用Quartz和OpenGL绘图 有时应用程序需要能够自定义绘图.一个库是Qu ...