题目大意:

给定n m 为图的点数和边数

接下来m行 u v 为u到v有一条边

要求最少几笔能画完图的所有边

输出每笔画过的路径编号 正数编号正向 负数编号反向

题解:https://www.cnblogs.com/xiuwenli/p/9372062.html

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define LL long long
#define mem(i,j) memset(i,j,sizeof(i))
using namespace std;
const int N=1e5+;
int n, m;
struct EDGE {
int to,nt; int id; bool f;
}E[N<<];
int head[N], tot;
void addE(int u,int v,int id) {
E[tot].f=; E[tot].to=v;
E[tot].id=id; E[tot].nt=head[u];
head[u]=tot++;
}
bool vis[N];
int deg[N], cnt;
vector <int> ans[N];
void init() {
tot=cnt=; mem(head,-);
mem(deg,); mem(vis,);
} void dfs(int u) {
vis[u]=;
for(int i=head[u];~i;i=E[i].nt) {
int v=E[i].to, id=E[i].id;
if(!E[i].f) {
E[i].f=E[i^].f=; // 这条边和对应的反向边标记
dfs(v); // 一直搜到终点
if(id) ans[cnt].push_back(-id); // 从终点开始反向记录路径 所以是-id
else cnt++; // id为0说明遇到了手动加的边 就是新的一笔
}
}
} int main()
{
while(~scanf("%d%d",&n,&m)) {
init();
for(int i=;i<=m;i++) {
int u,v; scanf("%d%d",&u,&v);
deg[u]++, deg[v]++;
addE(u,v,i); addE(v,u,-i);
} int u=;
for(int i=;i<=n;i++)
if(deg[i]&) { // 奇数度的点 两两连边
if(u) addE(u,i,), addE(i,u,), u=;
else u=i;
} for(int i=;i<=n;i++)
if(!vis[i] && (deg[i]&)) { /// 先从奇数点开始搜
cnt++; dfs(i); cnt--; // cnt记录的是之前的最后一条路
}
// 所以记录新的路应该cnt++先移到下一条路
// 搜索过程中一直cnt++所以搜索结束后cnt是在下一条路
// 此时将cnt置为最后一条路 应该cnt--
for(int i=;i<=n;i++)
if(!vis[i] && deg[i]) {
cnt++; dfs(i);
} // 此时还未走过的点都是偶数点 形成一个环 所以不需要cnt-- printf("%d\n",cnt);
for(int i=;i<=cnt;i++) {
int len=ans[i].size();
printf("%d",len);
for(int j=;j<len;j++)
printf(" %d",ans[i][j]);
printf("\n"); ans[i].clear();
}
} return ;
}

hdu6311 /// 欧拉路径 无向图最小路径覆盖 输出正反路径的更多相关文章

  1. 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)

    http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...

  2. Codevs 1904 最小路径覆盖问题

    1904 最小路径覆盖问题 时间限制: 2 s 空间限制: 256000 KB 题目等级 : 大师 Master 传送门 题目描述 Description 给定有向图G=(V,E).设P 是G 的一个 ...

  3. 【PowerOJ1738】最小路径覆盖

    Description 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个 顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶 ...

  4. COGS728. [网络流24题] 最小路径覆盖问题

    算法实现题8-3 最小路径覆盖问题(习题8-13) ´问题描述: 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中 ...

  5. Cogs 728. [网络流24题] 最小路径覆盖问题

    [网络流24题] 最小路径覆盖问题 ★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件 时间限制:1 s 内存限制:128 MB 算法实现题8-3 最小路径覆盖问题(习题8-1 ...

  6. cogs 728. [网络流24题] 最小路径覆盖问题 匈牙利算法

    728. [网络流24题] 最小路径覆盖问题 ★★★☆   输入文件:path3.in   输出文件:path3.out   评测插件时间限制:1 s   内存限制:128 MB 算法实现题8-3 最 ...

  7. 有向无环图(DAG)的最小路径覆盖(转)

    DAG的最小路径覆盖 定义:在一个有向图中,找出最少的路径,使得这些路径经过了所有的点. 最小路径覆盖分为最小不相交路径覆盖和最小可相交路径覆盖. 最小不相交路径覆盖:每一条路径经过的顶点各不相同.如 ...

  8. (step6.3.4)hdu 1151(Air Raid——最小路径覆盖)

    题意:     一个镇里所有的路都是单向路且不会组成回路. 派一些伞兵去那个镇里,要到达所有的路口,有一些或者没有伞兵可以不去那些路口,只要其他人能完成这个任务.每个在一个路口着陆了的伞兵可以沿着街去 ...

  9. 有向无环图(DAG)的最小路径覆盖

    DAG的最小路径覆盖 定义:在一个有向图中,找出最少的路径,使得这些路径经过了所有的点. 最小路径覆盖分为最小不相交路径覆盖和最小可相交路径覆盖. 最小不相交路径覆盖:每一条路径经过的顶点各不相同.如 ...

随机推荐

  1. 爬虫(四)—— 使用pyecharts展示数据

    pyecharts模块 pyecharts可以将数据形象的在页面中用图表显示 一.安装 pip install pyecharts 二.使用 import pyecharts # 创建一个页面 pag ...

  2. HBase优化——读写优化

    Hbase2.0查询优化 1)设置scan缓存 HBase中Scan查询可以设置缓存,方法是setCaching(),这样可以有效的减少服务端与客户端的交互,更有效的提升扫描查询的性能. Scan s ...

  3. python获取每日涨跌停股票统计,封闭时间和打开次数

    接口:limit_list 描述:获取每日涨跌停股票统计,包括封闭时间和打开次数等数据,帮助用户快速定位近期强(弱)势股,以及研究超短线策略. 限量:单次最大1000,总量不限制 积分:用户积2000 ...

  4. 【linux】centos6/7 + nginx 利用certbot 申请https证书

    没错我又踩坑了.昨晚上搞到十二点半才成功申请.鬼知道OJ服务器是个什么渣渣. 早上才算正式弄好,中间也学了不少东西,记录一下.这次是http转https,所以默认的还是只有80端口. 请务必确保自己的 ...

  5. Python之异常抛出机制

    异常抛出机制 : 常见的Python异常:

  6. php 单例模式封装MySQL类

    class MysqlConn { //定义一个私有的静态属性,用来存放实例化的对象 private static $dbcon; //定义一个私有的静态属性,用来存在数据库的连接 private s ...

  7. 2018-2-13-win10-uwp-网络编程

    title author date CreateTime categories win10 uwp 网络编程 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 17: ...

  8. zookeeper常用配置详解

    #ZK中的一个时间单元.ZK中所有时间都是以这个时间单元为基础,进行整数倍配置的.例如,session的最小超时时间是2*tickTime tickTime=2000 #Follower在启动过程中, ...

  9. Codeforces 19E&BZOJ 4424 Fairy(好题)

    日常自闭(菜鸡qaq).不过开心的是看了题解之后1A了.感觉这道题非常好,必须记录一下,一方面理清下思路,一方面感觉自己还没有完全领会到这道题的精髓先记下来以后回想. 题意:给定 n 个点,m 条边的 ...

  10. ubuntu 安装pip并修改为阿里云pip源

    0.sudo su1.安装pipapt-get install python-pip python-dev build-essentialpip install --upgrade pip pip i ...