Ceph 之 Background on http frontends
Background on http frontends
-civetweb frontend
--thread per connection, requires a lot of threads
---qos or priority queuing would block frontend threads
-beast frontend
--boost::beast for http parsing
--boost::asio for async networking/io
--async for accepting connections and reading headers
---good model for qos - can queue requests without blocking threads
--synchronous call to process_request()
---thread per request, still need lots of threads
goal: scale requests independently of threads
-why boost::asio
--doesn't impose a threading model. io_service object is a reactor, call run() from any thread
--mature library, basis for C++ std::net library in Networking TS [1]
--the Extensible Asynchronous Model [2] provides several options for async primitives (callbacks, futures, coroutines)
--boost::asio::spawn() stackful coroutines: "enables programs to implement asynchronous logic in a synchronous manner" [3 http://www.boost.org/doc/libs/1_65_1/doc/html/boost_asio/reference/spawn.html]
proposed librados interfaces for asio [4 https://github.com/ceph/ceph/pull/19054]
--header-only wrapper over librados c++ api
--conform to the Extensible Asynchronous Model, so support the same primitives - see unit tests for examples
--deeper Objecter integration work in progress by Adam Emerson [5]
--gives radosgw a unified interface for async operations over http and rados
async process_request() [6]
-add optional yield_context* argument to process_request()
-beast frontend passes one, civetweb passes nullptr
-any librados calls use new interface when given a yield_context
-requires the yield_context* to be passed everywhere in between
--but we can stash it in req_state to make it available to all ops
-getting started with the easy stuff
--rgw_get_system_obj()
--reading user objects for authentication
--reading bucket/bucket instance objects (common to most s3/swift ops)
-this process leaves a lot of gaps. for example, rgw_get_system_obj() is in tons of call paths without access to a yield_context
--(either outside process_request(), or just aren't hooked up yet)
--just passing 'nullptr' makes it impossible to differentiate the yield_context argument from its 4 other arguments that default to nullptr!
--that makes it impossible to reason about which call paths could run asynchronously
-measurable progress towards full asynchrony
--new vocabulary type 'optional_yield_context' with 'null_yield' for empty value
--null_yield designates a call site that is definitely synchronous
--makes it easy to audit the code and find the pieces that still need conversion
-fighting regression once we're close
--have librados calls log warnings when called synchronously from a beast frontend thread (using a thread_local flag)
--scan those logs in teuthology runs to flag failures
and then?
-vastly reduce the number of frontend threads for beast
-consolidate other background threads
remaining work:
- RGWGetObj waits on AioCompletions - use AioThrottle from PutObj instead
- replace librados IoCtx::operate() calls with rgw_rados_operate() and optional_yield_context
- thread optional_yield_context all the way from beast frontend to rgw_rados_operate() calls
- some cls client calls use IoCtx::operate() directly
- block_while_resharding() sleeps on a condition variable
- no async interface for pool object listings with IoCtx.nobjects_begin()
- libcurl http requests for auth (Keystone and OPA)
[1] "C++ Technical Specification - Extensions for Networking"
http://cplusplus.github.io/networking-ts/draft.pdf
[2] "Library Foundations for Asynchronous Operations"
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3896.pdf
[3] Reference: boost::asio::spawn
http://www.boost.org/doc/libs/1_65_1/doc/html/boost_asio/reference/spawn.html
[4] "librados: add async interfaces for use with boost::asio"
https://github.com/ceph/ceph/pull/19054
[5] "osdc/Objecter: Boost.Asio (I object!)"
https://github.com/ceph/ceph/pull/16715
[6] work in progress branch:
https://github.com/cbodley/ceph/commits/wip-rgw-async-process-171120
Ceph 之 Background on http frontends的更多相关文章
- 虚拟机使用ceph-deploy安装ceph
参考: ceph官网介绍 使用ceph-deploy安装Ceph 12.x 安装虚拟机 首先安装虚拟机环境,虚拟机安装这里不做介绍,本实验使用的镜像为CentOS-7-x86_64-Everythin ...
- Ceph常用命令
目录 [1.环境准备] [2.部署管理] [3.集群扩容] [4.用户管理] [5.密钥环管理] [6.块设备管理] [7.快照管理] [8.参考链接] 简要说明: 最近心血来潮,对分布式存储感兴趣, ...
- ceph mimic版本 部署安装
ceph 寻址过程 1. file --- object映射, 把file分割成N个相同的对象 2. object - PG 映射, 利用静态hash得到objectID的伪随机值,在 "位 ...
- Ceph常规操作及常见问题梳理
Ceph集群管理 每次用命令启动.重启.停止Ceph守护进程(或整个集群)时,必须指定至少一个选项和一个命令,还可能要指定守护进程类型或具体例程. **命令格式如 {commandline} [opt ...
- ceph kubernetes中使用
1.在管理节点上,进入刚创建的放置配置文件的目录,用 ceph-deploy 执行如下步骤 mkdir /opt/cluster-ceph cd /opt/cluster-ceph ceph-depl ...
- 1、ceph-deploy之部署ceph集群
环境说明 server:3台虚拟机,挂载卷/dev/vdb 10G 系统:centos7.2 ceph版本:luminous repo: 公网-http://download.ceph.com,htt ...
- CEPH RGW多 ZONE的配置
相关的名称解释 Region :可以理解为区域,是基于地理位置的逻辑划分:如:华南,华北之类,包含多个region的Ceph集群必须指定一个master region,一个region可以包含一个或者 ...
- Ceph 管理和使用
ceph 管理 上次介绍了Ceph集群架构并且搭建了ceph集群,本节介绍ceph用户认证流程和挂载.cephFS.ceph RBD以及ceph mds高可用 1. ceph 授权流程和用户权限管理 ...
- 安装ceph (快速) 步骤二:存储集群
用 ceph-deploy 从管理节点建立一个 Ceph 存储集群,该集群包含三个节点,以此探索 Ceph 的功能. 创建一个 Ceph 存储集群,它有一个 Monitor 和两个 OSD 守护进程. ...
随机推荐
- 《Python机器学习及实践:从零开始通往Kaggle竞赛之路》
<Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代 ...
- C++星号的含义
[转载] [http://blog.sina.com.cn/s/blog_4a50d85b0100uk3c.html] 1.乘法运算符 2.定义指针 int *p = 0; 还是 int* p ...
- Windows下shell神器
想找一个可以在Windows平台玩命令行的东西,不想装虚拟机搞linux,所以找到两个神器 如何升级Babun中的Git Babun中默认已经集成Git,只是有可能不是最新的版本 如果只是更新Babu ...
- C#通过鼠标点击panel移动来控制无边框窗体移动
Point point = , -); bool mouseDown = false; private void panelEx5_MouseDown(object sender, MouseEven ...
- HDU 3086 马拉车模板
模板,但是对这个算法还是不太清楚,真实不明觉厉.... #include <iostream> #include <cstdio> #include <string.h& ...
- 只要三步!阿里云DLA帮你处理海量JSON数据
概述 您可能有大量应用程序产生的JSON数据,您可能需要对这些JSON数据进行整理,去除不想要的字段,或者只保留想要的字段,或者仅仅是进行数据查询. 那么,利用阿里云Data Lake Analyti ...
- Django项目:CRM(客户关系管理系统)--54--45PerfectCRM实现账号快速重置密码
# gbacc_ajax_urls.py # ————————42PerfectCRM实现AJAX全局账号注册———————— from django.conf.urls import url fro ...
- GIL(全局解释器锁) 理解
GIL 锁,全局解释器锁,作用就是,限制多线程同时执行,保证同一时间内只有一个线程在执行. 线程非独立的,所以同一进程里线程是数据共享,当各个线程访问数据资源时会出现竞状态,即数据可能会同时被多个 ...
- 移动web--移动屏幕适配-完整的viewport设置
- BIRT简介
BIRT(Business Intelligence and Reporting Tools,商业智能和报告工具,曾被安讯公司中国分公司译作百灵)项目是一个开源软件项目,其为富客户端应用和Web应用程 ...