机器学习——Bagging与随机森林算法及其变种
随机森林算法:
一般用于大规模数据,百万级以上的。
在Bagging算法的基础上,如上面的解释,在去重后得到三组数据,那么再随机抽取三个特征属性,选择最佳分割属性作为节点来创建决策树。可以说是
RF(随机森林)的变种:
ExtraTree算法
凡解:和随机森林的原理基本一样。主要差别点如下
①随机森林是在含有m个数据的原数据集上有放回的抽取m个数据,而ExtraTree算法是直接用原数据集训练。
②随机森林在选择划分特征点的时候会和传统决策树一样,会基于信息增益、信息增益率、基尼系数、均方差等原则来选择最优特征值;而ExtraTree会随机的选择一个特征值来划分决策树。
TRTE算法
不重要,了解一下即可
官解:TRTE是一种非监督的数据转化方式。对特征属性重新编码,将低维的数据集映射到高维,从而让映射到高维的数据更好的应用于分类回归模型。
划分标准为方差
看例子吧直接:

IForest
IForest是一种异常点检测算法,使用类似RF的方式来检测异常点
此算法比较坑,适应性不强。
1.在随机采样的过程中,一般只需要少量数据即可;
•2.在进行决策树构建过程中,IForest算法会随机选择一个划分特征,并对划分特征随机选择一个划分阈值;
•3.IForest算法构建的决策树一般深度max_depth是比较小的。
此算法可以用,但此算法连创作者本人也无法完整的解释原理。
RF(随机森林)的主要优点:
●1.训练可以并行化,对于大规模样本的训练具有速度的优势;
●2.由于进行随机选择决策树划分特征列表,这样在样本维度比较高的时候,仍然具有比较高的训练性能;
●3.可以给出各个特征的重要性列表;
●4.由于存在随机抽样,训练出来的模型方差小,泛化能力强;
●5. RF实现简单;
●6.对于部分特征的缺失不敏感。
RF的主要缺点:
●1.在某些噪音比较大的特征上(数据特别异常情况),RF模型容易陷入过拟合;
●2.取值比较多的划分特征对RF的决策会产生更大的影响,从而有可能影响模型的
效果。
随机树主要参数,划线部分为主要调整的参数

机器学习——Bagging与随机森林算法及其变种的更多相关文章
- Bagging与随机森林算法原理小结
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...
- Bagging与随机森林(RF)算法原理总结
Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没 ...
- 机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting)
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树--------------------------------------------- ...
- Python机器学习笔记——随机森林算法
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...
- 机器学习回顾篇(12):集成学习之Bagging与随机森林
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...
- 机器学习总结(二)bagging与随机森林
一:Bagging与随机森林 与Boosting族算法不同的是,Bagging和随机森林的个体学习器之间不存在强的依赖关系,可同时生成并行化的方法. Bagging算法 bagging的算法过程如下: ...
- 机器学习相关知识整理系列之二:Bagging及随机森林
1. Bagging的策略 从样本集中重采样(有放回)选出\(n\)个样本,定义子样本集为\(D\): 基于子样本集\(D\),所有属性上建立分类器,(ID3,C4.5,CART,SVM等): 重复以 ...
- R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...
随机推荐
- 2018-12-25-C#-使用转换语义版本号
title author date CreateTime categories C# 使用转换语义版本号 lindexi 2018-12-25 09:25:41 +0800 2018-06-29 12 ...
- 《C语言深度解剖》学习笔记之关键字
第一章 关键字 C语言共有32个关键字. 关键字 auto 声明自动变量 int 声明整型变量 long 声明长整型变量 char 声明字符型变量 float 声明浮点型变量 short 声明短整 ...
- Java中的Runnable、Callable、Future、FutureTask的区别与示例
Java中存在Runnable.Callable.Future.FutureTask这几个与线程相关的类或者接口,在Java中也是比较重要的几个概念,我们通过下面的简单示例来了解一下它们的作用于区别. ...
- uda 3.C++二维向量
二维向量 接下来,你将使用向量来存储矩阵.就像 Python 使用列表列表来存储矩阵一样,C++ 使用的是向量的向量.用于声明二维向量的语法有点复杂. 假设你正在使用 Python,并且想存储一个 3 ...
- include 语句中使用双引号与括号有什么区别?
Include 的语法 你在学习如何构造函数时,看到了不同的 include 语句: # include <iostream> # include "distance.h&quo ...
- es6 中let与const的简析
1.let 它的作用类似于var,用来声明变量,但是所声明的变量,只在let命令所在的代码块内有效. if(true){ ; let b = ; } document.write(a); docume ...
- Knative Tracing 介绍
摘要: 一个完整的业务实现想要基于 Serverless 模型来开发的话可能会分解成多个 Serverless 模块,每一个模块单独通过 Knative 的 Serving 部署,那么这些不同的 Se ...
- 「BZOJ3505」[CQOI2014] 数三角形
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不 ...
- 2019年CPS-J复赛题解
题目涉及算法: 数字游戏:字符串入门题: 公交换乘:模拟: 纪念品:完全背包: 数字游戏:广搜/最短路. 数字游戏 题目链接:https://www.luogu.com.cn/problem/P566 ...
- 2015-2016 ACM-ICPC Southwestern Europe Regional Contest (SWERC 15)
C. Canvas Painting 合并果子. E. Wooden Signs \(dp(i,l,r)\)表示第\(i\)块木板的长度区间为\([l,r]\)的方案数,根据题意,\(l\)或\(r\ ...