Bagging算法: 
  凡解:给定M个数据集,有放回的随机抽取M个数据,假设如此抽取3组,3组数据一定是有重复的,所以先去重。去重后得到3组数据,每组数据量分别是s1,s2,s3,然后三组分别训练组合成一个强模型。如下图:

随机森林算法

  一般用于大规模数据,百万级以上的。

  在Bagging算法的基础上,如上面的解释,在去重后得到三组数据,那么再随机抽取三个特征属性,选择最佳分割属性作为节点来创建决策树。可以说是

随机森林=决策树+Bagging

 如下图

RF(随机森林)的变种:

  ExtraTree算法

  凡解:和随机森林的原理基本一样。主要差别点如下

①随机森林是在含有m个数据的原数据集上有放回的抽取m个数据,而ExtraTree算法是直接用原数据集训练。

②随机森林在选择划分特征点的时候会和传统决策树一样,会基于信息增益、信息增益率、基尼系数、均方差等原则来选择最优特征值;而ExtraTree会随机的选择一个特征值来划分决策树。

  TRTE算法

  不重要,了解一下即可

  官解:TRTE是一种非监督的数据转化方式。对特征属性重新编码,将低维的数据集映射到高维,从而让映射到高维的数据更好的应用于分类回归模型。

  划分标准为方差

  看例子吧直接:

  

  IForest

  IForest是一种异常点检测算法,使用类似RF的方式来检测异常点

  此算法比较坑,适应性不强。

  1.在随机采样的过程中,一般只需要少量数据即可;

  •2.在进行决策树构建过程中,IForest算法会随机选择一个划分特征,并对划分特征随机选择一个划分阈值;

  •3.IForest算法构建的决策树一般深度max_depth是比较小的。

  此算法可以用,但此算法连创作者本人也无法完整的解释原理。

RF(随机森林)的主要优点:

●1.训练可以并行化,对于大规模样本的训练具有速度的优势;

●2.由于进行随机选择决策树划分特征列表,这样在样本维度比较高的时候,仍然具有比较高的训练性能;

●3.可以给出各个特征的重要性列表;
●4.由于存在随机抽样,训练出来的模型方差小,泛化能力强;
●5. RF实现简单;
●6.对于部分特征的缺失不敏感。
RF的主要缺点:
●1.在某些噪音比较大的特征上(数据特别异常情况),RF模型容易陷入过拟合;
●2.取值比较多的划分特征对RF的决策会产生更大的影响,从而有可能影响模型的
效果。

随机树主要参数,划线部分为主要调整的参数

机器学习——Bagging与随机森林算法及其变种的更多相关文章

  1. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  2. Bagging与随机森林(RF)算法原理总结

    Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没 ...

  3. 机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting)

    本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树--------------------------------------------- ...

  4. Python机器学习笔记——随机森林算法

    随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...

  5. 机器学习回顾篇(12):集成学习之Bagging与随机森林

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  6. R语言︱机器学习模型评估方案(以随机森林算法为例)

    笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...

  7. 机器学习总结(二)bagging与随机森林

    一:Bagging与随机森林 与Boosting族算法不同的是,Bagging和随机森林的个体学习器之间不存在强的依赖关系,可同时生成并行化的方法. Bagging算法 bagging的算法过程如下: ...

  8. 机器学习相关知识整理系列之二:Bagging及随机森林

    1. Bagging的策略 从样本集中重采样(有放回)选出\(n\)个样本,定义子样本集为\(D\): 基于子样本集\(D\),所有属性上建立分类器,(ID3,C4.5,CART,SVM等): 重复以 ...

  9. R语言︱决策树族——随机森林算法

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...

随机推荐

  1. Knative Tracing 介绍

    摘要: 一个完整的业务实现想要基于 Serverless 模型来开发的话可能会分解成多个 Serverless 模块,每一个模块单独通过 Knative 的 Serving 部署,那么这些不同的 Se ...

  2. 2、Dapper的使用

    1.表结构介绍: 1)课程表 2)成绩表 3)学生表  2.获取数据库连接的工厂类 需要添加System.Configuration和MySql.Data.MySqlClient引用 namespac ...

  3. jieba中文分词源码分析(四)

    一.未登录词问题在jieba中文分词的第一节曾提到未登录词问题 中文分词的难点 分词规范,词的定义还不明确 (<统计自然语言处理>宗成庆)歧义切分问题,交集型切分问题,多义组合型切分歧义等 ...

  4. 【原生JS】键盘事件

    视频播放器音量调节效果. 效果图:“我很丑!~可是我有音乐和啤酒!~” HTML: <!DOCTYPE html> <html> <head> <meta c ...

  5. 2018-10-19-Nuget-通过-dotnet-命令行发布

    title author date CreateTime categories Nuget 通过 dotnet 命令行发布 lindexi 2018-10-19 09:15:53 +0800 2018 ...

  6. CodeForces 1243"Character Swap (Hard Version)"(multimap)

    传送门 •前置知识-multimap的用法 $multimap$ 与 $map$ 的区别在于一个 $key$ 可以对应几个值: 对于 $map$ 而言,一个 $key$ 只能对应一个值,并且按照 $k ...

  7. java throw和catch同时使用

    当异常出现在当前方法中,程序只对异常进行部分处理,还有一些处理需要在方法的调用者中才能处理完成,此时还应该再次抛出异常,这样就可以让方法的调用者也能捕获到异常;   Eg: public static ...

  8. 脑残的设计--- 视图(view)里面包含order by

    2015/05/26 更新 今天又遇到了类似问题...尼玛无语了 编码规范啊 !!! 今天有个兄弟跟我说sql跑得太慢了,让我看看.sql如下: SELECT rownum row_num, pv.v ...

  9. spring security自定义指南

    序 本文主要研究一下几种自定义spring security的方式 主要方式 自定义UserDetailsService 自定义passwordEncoder 自定义filter 自定义Authent ...

  10. linux scull 函数open 方法

    open 方法提供给驱动来做任何的初始化来准备后续的操作. 在大部分驱动中, open 应当 进行下面的工作: 检查设备特定的错误(例如设备没准备好, 或者类似的硬件错误 如果它第一次打开, 初始化设 ...