链接:https://codeforces.com/contest/1288/problem/E

题意:序列p的长度为n,初始序列为1 2 3 4 ...n,然后有m次操作,每次指定序列中一个数移动到第一位,然后剩下的所有序列往后移动一位,求每个数在出现过的所有历史序列中所在位置索引的最大值和最小值。

思路:用一个树状数组维护序列的位置,在序列的前面空出m个位置,目的是留给m次操作移动数字到前m个位置。初始时,在输入数据的时候,用pos数组记录所有数字的位置为 i+m,然后树状数组的 i+m处更新+1代表第i+m个位置放了一个数,每次移动操作时,在该位置做-1的更新操作表示此处清零,该位置已经没有放置数字,然后可以用树状数组查询该位置前面部分的区间和,就表示前面有多少个数,自然而然就可以更新这个数出现位置的最大值了,而最小值更新则为:如果进行了移动操作,那么该数字位置的最小值就是1了,因为把该数字放在了序列最前面,最后再遍历一遍所有数字,查询更新一些没有进行移动操作的数出现位置的最大值。具体看代码

AC代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
const int maxn = 3e5+;
int t[maxn*];
int ansMin[maxn+],ansMax[maxn+];
int n,m;
inline int lowbit(int x){
return x&(-x);
}
void add(int x,int k){
while(x<=n+m){
t[x] = t[x] + k;
x +=lowbit(x);
}
}
int get(int x){
int ans = ;
while(x>=){
ans+=t[x];
x-=lowbit(x);
}
return ans;
}
int main(){
scanf("%d%d",&n,&m);
int pos[n+m+];
for(int i = ;i<=n;i++){
pos[i] = i + m;//初始化元素的位置,pos[i]为元素i的位置
ansMin[i] = i,ansMax[i] = i;
add(i + m,);//树状数组该位置更新+1
}
for(int i = ;i<m;i++){
int temp;
scanf("%d",&temp);
ansMin[temp] = ;
add(pos[temp],-);//该位置-1,
add(m-i,);//移动到最前面,树状数组+1
ansMax[temp] = max(ansMax[temp],get(pos[temp]));//查询前面有多少个元素,做max的更新
pos[temp] = m - i;//更新位置
}
for(int i = ;i<=n;i++){
ansMax[i] = max(ansMax[i],get(pos[i]));//最后check没有进行移动操作的元素
}
for(int i = ;i<=n;i++){
printf("%d %d\n",ansMin[i],ansMax[i]);
}
return ;
}

codeforces 1288E. Messenger Simulator(树状数组)的更多相关文章

  1. UVA 11423 - Cache Simulator (树状数组)

    UVA 11423 - Cache Simulator (树状数组) option=com_onlinejudge&Itemid=8&category=523&page=sho ...

  2. [Codeforces 1208D]Restore Permutation (树状数组)

    [Codeforces 1208D]Restore Permutation (树状数组) 题面 有一个长度为n的排列a.对于每个元素i,\(s_i\)表示\(\sum_{j=1,a_j<a_i} ...

  3. Codeforces 650D - Zip-line(树状数组)

    Codeforces 题目传送门 & 洛谷题目传送门 我怕不是个 nt--一开始忽略了"询问独立"这个条件--然后就一直在想有什么办法维护全局 LIS--心态爆炸 首先离散 ...

  4. Codeforces 1139F Dish Shopping 树状数组套平衡树 || 平衡树

    Dish Shopping 将每个物品拆成p 和 s 再加上人排序. 然后问题就变成了, 对于一个线段(L - R), 问有多少个(li, ri)满足  L >= li && R ...

  5. Codeforces 830B - Cards Sorting 树状数组

    B. Cards Sorting time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  6. CodeForces 522D Closest Equals 树状数组

    题意: 给出一个序列\(A\),有若干询问. 每次询问某个区间中值相等且距离最短的两个数,输出该距离,没有则输出-1. 分析: 令\(pre_i = max\{j| A_j = A_i, j < ...

  7. codeforces 589G G. Hiring(树状数组+二分)

    题目链接: G. Hiring time limit per test 4 seconds memory limit per test 512 megabytes input standard inp ...

  8. CodeForces–830B--模拟,树状数组||线段树

    B. Cards Sorting time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  9. Codeforces 960F Pathwalks ( LIS && 树状数组 )

    题意 : 给出若干个边,每条边按照给出的顺序编号,问你找到一条最长的边权以及边的编号同时严格升序的一条路径,要使得这条路径包含的边尽可能多,最后输出边的条数 分析 :  这题和 LIS 很相似,不同的 ...

随机推荐

  1. 【WPF学习】第一章 XAML介绍

    XAML(Extensible Application Markup Language的简写,发音为“zammel”)是用于实例化.NET对象的标记语言.尽管XAML是一种应用于诸多不同问题领域的技术 ...

  2. Python语法速查: 14. 测试与调优

    返回目录 本篇索引 (1)测试的基本概念 (2)doctest模块 (3)unittest模块 (4)调试器和pdb模块 (5)程序探查 (6)调优与优化 (1)测试的基本概念 对程序的各个部分建立测 ...

  3. CF1093E Intersection of Permutations [分块 +bitset]

    大家好, 我非常喜欢暴力数据结构, 于是就用分块A了此题 分块题,考虑前缀和 \(b_i\) 表示 bitset 即 \(0\) ~ $i $ 出现过的数字,然后考虑直接暴力复制块然后前缀和,修改也很 ...

  4. Codeforces Round #622 (Div. 2).C2 - Skyscrapers (hard version)

    第二次写题解,请多多指教! http://codeforces.com/contest/1313/problem/C2 题目链接 不同于简单版本的暴力法,这个数据范围扩充到了五十万.所以考虑用单调栈的 ...

  5. 2级搭建类203-Oracle 19c SI ASM 静默搭建(OEL7.7)

    Oracle 19c 单实例 ASM UDEV 方式在 OEL 7.7 上的安装

  6. 通过ssh-copy-id免密码连接Linux主机

    Login Raspberry Pi without passcode via ssh-copy-id Generate public key $ ssh-keygen -t rsa Upload p ...

  7. Python中io的open()在PyCharm环境下报错和路劲的问题

    PS:我也是初学者,上班空闲时间学习学习Python.今天学到io的时候,遇到了两个用PyCharm环境编写代码的小白错误,如下: 两个问题都是如下代码: 1. 第一个问题:当写好代码之后,点击运行报 ...

  8. 2017-9-15Opencv 杂

    Mat::at()的具体含义.指的是三通道.(0),(1),(2)分别表示BGR: Vector<Mat>结构的使用.将Mat类型的数据转化成了具有多个单通道的容器? 灰度图的具体含义.和 ...

  9. R语言函数化编程笔记1

    R语言函数化编程笔记1 notes:有一个不错的网站叫做stack overflow,有问题可以从上面找或者搜索答案,会有大佬相助. 在github上面可以找到很多R的扩展包,如果自己额修改被接受,那 ...

  10. java面试记录二:spring加载流程、springmvc请求流程、spring事务失效、synchronized和volatile、JMM和JVM模型、二分查找的实现、垃圾收集器、控制台顺序打印ABC的三种线程实现

    注:部分答案引用网络文章 简答题 1.Spring项目启动后的加载流程 (1)使用spring框架的web项目,在tomcat下,是根据web.xml来启动的.web.xml中负责配置启动spring ...