51nod 1627 瞬间移动(组合数学)
解题思路
因为每次横纵坐标至少\(+1\),所以可以枚举走的步数,枚举走的步数\(i\)后剩下的就是把\(n-1\)与\(m-1\)划分成\(i\)个有序正整数相加,所以用隔板法,\(ans=\sum\limits_{i=1}^{min(n,m)-1} C(n-2,i-1)*C(m-2,i-1)\)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN = 100005;
const int MOD = 1e9+7;
typedef long long LL;
int n,m,fac[MAXN],inv[MAXN];
LL ans;
int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
}
inline LL C(int x,int y){
if(x<y) return 0;
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
}
int main(){
scanf("%d%d",&n,&m);int Max=max(n,m),Min=n+m-Max;fac[0]=1;
for(int i=1;i<=Max;i++) fac[i]=(LL)fac[i-1]*i%MOD;
inv[Max]=fast_pow(fac[Max],MOD-2);
for(int i=Max-1;~i;i--) inv[i]=(LL)inv[i+1]*(i+1)%MOD;
for(int i=1;i<Min;i++) ans=(ans+(LL)C(n-2,i-1)*C(m-2,i-1)%MOD)%MOD;
printf("%lld\n",ans);
return 0;
}
51nod 1627 瞬间移动(组合数学)的更多相关文章
- 51Nod 1627 瞬间移动 —— 组合数学
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1627 1627 瞬间移动 基准时间限制:1 秒 空间限制:1 ...
- 51 Nod 1627瞬间移动(插板法!)
1627 瞬间移动 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右 ...
- Problem 2238 Daxia & Wzc's problem 1627 瞬间移动
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1627 http://acm.fzu.edu.cn/problem.php ...
- 2016"百度之星" - 初赛(Astar Round2B)1003 瞬间移动 组合数学+逆元
瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/ ...
- 51nod1627 瞬间移动
打表可以看出来是组合数...妈呀为什么弄成n+m-4,n-1,m-3就错啊... //打表可以看出来是组合数...妈呀为什么弄成n+m-4,n-1,m-3就错啊... #include<cstd ...
- 51Nod 1016 水仙花数 V2(组合数学,枚举打表法)
1016 水仙花数 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 水仙花数是指一个 n 位数 ( n≥3 ) ...
- 51nod 1189 算术基本定理/组合数学
www.51nod.com/onlineJudge/questionCode.html#!problemId=1189 1189 阶乘分数 题目来源: Spoj 基准时间限制:1 秒 空间限制:131 ...
- 51nod 1119 机器人走方格 V2 【组合数学】
挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...
- 51nod 1253:Kundu and Tree(组合数学)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1253 所有的三元组的可能情况数有ans0=C(n,3).然后 ...
随机推荐
- 6、Python 中 利用 openpyxl 读 写 excel 操作
__author__ = 'Administrator' from openpyxl import load_workbook # Excel_Util 类 class Excel_util: #初始 ...
- kNN算法和决策树
的整数. 下面看书上给出的实例: from numpy import * import operator def createdataset(): group=array([[1.0,1.1],[1. ...
- SQL的多表查询(Navicat)
-- 部门表 CREATE TABLE dept ( id INT PRIMARY KEY PRIMARY KEY, -- 部门id dname VARCHAR(50), -- 部门名称 loc VA ...
- yarn安装node-sass报错问题
react前端项目在用yarn install命令安装依赖时报错了,看了下报错信息是node-sass安装的时候编译报错. 解决方法: 第一步:配置淘宝镜像 yarn config set regis ...
- SparkSQL的一些用法建议和Spark的性能优化
1.写在前面 Spark是专为大规模数据处理而设计的快速通用的计算引擎,在计算能力上优于MapReduce,被誉为第二代大数据计算框架引擎.Spark采用的是内存计算方式.Spark的四大核心是Spa ...
- Sqlserver复杂查询
--联表修改 update xyzrb set xyzrb.xy_card=tablsb.card from xyzrb left join tablsb on xyzrb.xybh=tablsb.x ...
- git分布式版本控制系统权威指南学习笔记(六):git reset、get stash、git checkout总结
文章目录 1. 概述 2. 如何把修改暂存起来,留着以后使用? 2.1 使用场景 2.2 git stash 暂存进度 2.3 查看进度 2.4 恢复进度 3. 如何撤销工作区的修改? 4. 如何把暂 ...
- HTML中margin和padding的区别
我们以DIV为一个盒子例子,既然和显示生活中的盒子一样,那我们想一下,生活中的盒子 内部是不是空的好用来存放东西,而里面存放东西的区域我们给他起个名字叫“content(内 容)”,而盒子的纸壁给他起 ...
- 第十七章 程序管理与SELinux初探--进程、进程管理(ps、top)
一个程序被加载到内存当中运行,在内存内的那个数据就被称为进程(process).进程是操作系统上非常重要的概念,所有系统上面跑的数据都会以进程的类型存在.系统进程有哪些状态?不同状态会如何影响系统的运 ...
- 问题1-/usr/bin/python: No module named virtualenvwrapper
操作系统:Ubuntu 问题:创建虚拟环境时,出现:/usr/bin/python: No module named virtualenvwrapper 解决方法: 1.切换到用户家目录 2.打开隐藏 ...