1035 - Intelligent Factorial Factorization

Given an integer N, you have to prime factorize N! (factorial N).

Input

Input starts with an integer T (≤ 125), denoting the number of test cases.

Each case contains an integer N (2 ≤ N ≤ 100).

Output

For each case, print the case number and the factorization of the factorial in the following format as given in samples.

Case x: N = p1 (power of p1) * p2 (power of p2) * ...

Here x is the case number, p1, p2 ... are primes in ascending order.

Sample Input

Output for Sample Input

3

2

3

6

Case 1: 2 = 2 (1)

Case 2: 3 = 2 (1) * 3 (1)

Case 3: 6 = 2 (4) * 3 (2) * 5 (1)

Notes

The output for the 3rd case is (if we replace space with '.') is

Case.3:.6.=.2.(4).*.3.(2).*.5.(1)

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define N 200

using namespace std;
int n, k, id;
int a[N], b[N], prime[N], vis[N];

void init()///素数表
{
for(int i = 2; i < N; i++)
{
if(!vis[i])
{
prime[k++] = i;

for(int j = i + i; j < N; j += i)
vis[j] = 1;
}
}

}

void input(int n)
{
id = 0;
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));

for(int i = n; i >= 1; i--)
{
int tmp = i, t;

for(int j = 0; j < k && prime[j] <= n; j++)
{
t = 0;

while( tmp % prime[j] == 0)
{
t++;
tmp /= prime[j];
}

if(t != 0)
{
if(a[prime[j]] == 0)///如果该素数没有出现过,就把他放入数组b中。
b[id++] = prime[j];

a[prime[j]] += t;///把素数的个数存在a数组中。
}
}
}
}
void deal()
{
printf("%d = ", n);

sort(b, b+id);

for(int i = 0; i < id; i++)
{
if(i == 0)
printf("%d (%d)", b[i], a[b[i]]);
else
printf(" * %d (%d)", b[i], a[b[i]]);
}
}
int main(void)
{
int T, cas;

init();

scanf("%d", &T);

cas = 0;

while(T--)
{
cas++;

scanf("%d", &n);

input(n);
printf("Case %d: ", cas);
deal();
printf("\n");
}
return 0;
}

light oj 1035 - Intelligent Factorial Factorization 素因子分解的更多相关文章

  1. Intelligent Factorial Factorization LightOJ - 1035(水题)

    就是暴力嘛...很水的一个题... 不好意思交都... #include <iostream> #include <cstdio> #include <sstream&g ...

  2. Light OJ 1114 Easily Readable 字典树

    题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...

  3. Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖

    题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...

  4. Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖

    标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...

  5. Light OJ 1316 A Wedding Party 最短路+状态压缩DP

    题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...

  6. light oj 1007 Mathematically Hard (欧拉函数)

    题目地址:light oj 1007 第一发欧拉函数. 欧拉函数重要性质: 设a为N的质因数.若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N ...

  7. Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖

    题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...

  8. Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩

    题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...

  9. Jan's light oj 01--二分搜索篇

    碰到的一般题型:1.准确值二分查找,或者三分查找(类似二次函数的模型). 2.与计算几何相结合答案精度要求比较高的二分查找,有时与圆有关系时需要用到反三角函数利用 角度解题. 3.不好直接求解的一类计 ...

随机推荐

  1. python中各种文件打开模式

    在python中,总的来说有三种大的模式打开文件,分别是:a, w, r 当以a模式打开时,只能写文件,而且是在文件末尾添加内容. 当以a+模式打开时,可以写文件,也可读文件,可是在读文件的时候,会发 ...

  2. .NET为什么要使用异步(async)编程?⭐⭐⭐⭐⭐

    .NET为什么要使用异步(async)编程? 有几点坐下笔记 ⭐⭐⭐⭐: 1. 同步方法 static void Main(string[] args) { Console.WriteLine($&q ...

  3. Nginx的一理解(2)

    1.静态HTTP服务器 首先,Nginx是一个HTTP服务器,可以将服务器上的静态文件(如HTML.图片)通过HTTP协议展现给客户端. 配置:

  4. html+css 知识点总结 day1(01-08)

    01  初步认识浏览器 02 浏览器内核 IE   内核:Trident,                 win10 Edge  内核:EdgeHTML Firefox(火狐浏览器)   内核:Ge ...

  5. Nginx作为web静态资源服务器——跨域访问

    跨站访问 ​ 为什么浏览器禁止跨域访问 ​ Nginx跨站访问 Syntax:add_header name value [always]; Default:—— Context:http,serve ...

  6. ORM执行原生SQL语句

    # 1.connectionfrom django.db import connection, connections cursor = connection.cursor() # cursor = ...

  7. java小心机(3)| 浅析finalize()

    每天进步一丢丢,连接梦与想 如果你停止就是谷底,如果你还在努力就是上坡 系列文章 java"小心机"(1)[资源彩蛋!] java小心机(2)| 重载和构造器的小细节 预备知识 J ...

  8. .NET Core Install for Ubuntu 14.04

      Add the dotnet apt-get feed In order to install .NET Core on Ubuntu or Linux Mint, you need to fir ...

  9. AMD R5 2400G插帧教程

    最近买的小主机带的是AMD R5 2400G显卡,支持AMD的插帧技术,Sandeepin肯定要体验一把效果. BlueskyFRC 按照网上的教程配置,似乎2400G显卡驱动里没有AMD Fluid ...

  10. Oracle数据库、实例、用户、表空间、表之间的关系

    完整的Oracle数据库通常由两部分组成:Oracle数据库和数据库实例. 1) 数据库是一系列物理文件的集合(数据文件,控制文件,联机日志,参数文件等): 2) Oracle数据库实例则是一组Ora ...