题意:将一个8*8的棋盘(每一个单元正方形有个分值)沿直线(竖或横)割掉一块,留下一块,对留下的这块继续这样操作,总共进行n - 1次,得到n块(1 < n < 15)矩形,每一个矩形的分值就是单元正方形的分值的和,问这n个矩形的最小均方差。

题目链接:

id=1191">http://poj.org/problem?

id=1191

——>>此题中。均方差比較,等价于方差比較,等价于平方和比較。

状态:dp[x1][y1][x2][y2][i]表示将(x1, y1)到(x2, y2)的矩形切割i次的最小平方和。

状态转移方程:dp[x1][y1][x2][y2][i] = min(dp[x1][y1][j][y2][i - 1] + nSquare[j + 1][y1][x2][y2], dp[j + 1][y1][x2][y2][i - 1] + nSquare[x1][y1][j][y2], );(水平方向分割)

dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][j][i - 1] + nSquare[x1][j + 1][x2][y2], dp[x1][j + 1][x2][y2][i - 1] + nSquare[x1][y1][x2][j]);(竖直方向分割)

两个方向再取最小值。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using std::sqrt;
using std::min; const int WIDTH = 8;
const int MAXN = 15 + 1;
const int INF = 0x3f3f3f3f; int a[WIDTH + 1][WIDTH + 1];
int nSum[WIDTH + 1][WIDTH + 1][WIDTH + 1][WIDTH + 1];
int nSquare[WIDTH + 1][WIDTH + 1][WIDTH + 1][WIDTH + 1];
int dp[WIDTH + 1][WIDTH + 1][WIDTH + 1][WIDTH + 1][MAXN]; void Init()
{
memset(nSum, 0, sizeof(nSum));
for (int x1 = 1; x1 <= WIDTH; ++x1)
{
for (int y1 = 1; y1 <= WIDTH; ++y1)
{
for (int x2 = x1; x2 <= WIDTH; ++x2)
{
for (int y2 = y1; y2 <= WIDTH; ++y2)
{
nSum[x1][y1][x2][y2] = nSum[x1][y1][x2 - 1][y2] + nSum[x1][y1][x2][y2 - 1] - nSum[x1][y1][x2 - 1][y2 - 1] + a[x2][y2];
nSquare[x1][y1][x2][y2] = nSum[x1][y1][x2][y2] * nSum[x1][y1][x2][y2];
dp[x1][y1][x2][y2][0] = nSquare[x1][y1][x2][y2];
}
}
}
}
} void Dp(int n)
{
for (int i = 1; i <= n - 1; ++i)
{
for (int x1 = WIDTH; x1 >= 1; --x1)
{
for (int y1 = 1; y1 <= WIDTH; ++y1)
{
for (int x2 = x1; x2 <= WIDTH; ++x2)
{
for (int y2 = y1; y2 <= WIDTH; ++y2)
{
dp[x1][y1][x2][y2][i] = INF;
for (int j = x1; j < x2; ++j)
{
dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][y2][i], dp[x1][y1][j][y2][i - 1] + nSquare[j + 1][y1][x2][y2]);
dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][y2][i], dp[j + 1][y1][x2][y2][i - 1] + nSquare[x1][y1][j][y2]);
}
for (int j = y1; j < y2; ++j)
{
dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][y2][i], dp[x1][y1][x2][j][i - 1] + nSquare[x1][j + 1][x2][y2]);
dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][y2][i], dp[x1][j + 1][x2][y2][i - 1] + nSquare[x1][y1][x2][j]);
}
}
}
}
}
}
} void Output(int n)
{
double fAvg = 1.0 * nSum[1][1][8][8] / n;
printf("%.3f\n", sqrt(1.0 * dp[1][1][8][8][n - 1] / n - fAvg * fAvg));
} void Read()
{
for (int i = 1; i <= WIDTH; ++i)
{
for (int j = 1; j <= WIDTH; ++j)
{
scanf("%d", &a[i][j]);
}
}
} int main()
{
int n; while (scanf("%d", &n) == 1)
{
Read();
Init();
Dp(n);
Output(n);
} return 0;
}

poj - 1191 - 棋盘切割(dp)的更多相关文章

  1. poj 1191 棋盘切割 (压缩dp+记忆化搜索)

    一,题意: 中文题 二.分析: 主要利用压缩dp与记忆化搜索思想 三,代码: #include <iostream> #include <stdio.h> #include & ...

  2. poj 1191 棋盘分割(dp + 记忆化搜索)

    题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方 ...

  3. POJ 1191 棋盘分割(DP)

    题目链接 大体思路看,黑书...其他就是注意搞一个in数组,这样记忆化搜索,貌似比较快. #include <cstdio> #include <cstring> #inclu ...

  4. HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索

    题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...

  5. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  6. POJ - 1191 棋盘分割 记忆递归 搜索dp+数学

    http://poj.org/problem?id=1191 题意:中文题. 题解: 1.关于切割的模拟,用递归 有这样的递归方程(dp方程):f(n,棋盘)=f(n-1,待割的棋盘)+f(1,割下的 ...

  7. (中等) POJ 1191 棋盘分割,DP。

    Description 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  8. POJ 1191 棋盘分割(DP)

    题目链接 题意 : 中文题不详述. 思路 : 黑书上116页讲的很详细.不过你需要在之前预处理一下面积,那样的话之后列式子比较方便一些. 先把均方差那个公式变形, 另X表示x的平均值,两边平方得 平均 ...

  9. POJ 1191 棋盘分割 (区间DP,记忆化搜索)

    题面 思路:分析公式,我们可以发现平均值那一项和我们怎么分的具体方案无关,影响答案的是每个矩阵的矩阵和的平方,由于数据很小,我们可以预处理出每个矩阵的和的平方,执行状态转移. 设dp[l1][r1][ ...

随机推荐

  1. Weblogic跨域session冲突解决办法

    一.现象: 在WebLogic中,有两个不同域A(端口:9000)和B(端口:8000),应用CA在域A中,应用CB在域B中,进行如下操作: 1.先登录应用CA,再登录应用CB,然后,切换回应用CA, ...

  2. Android之对TabActivity的见解,个人觉得不错

    http://www.cnblogs.com/answer1991/archive/2012/05/08/2489844.html answer1991 无法停止我内心的狂热,对未来的执着. Andr ...

  3. 黑马day17 ajax&amp;实现username自己主动刷新

    1. regist.jsp文件 <%@ page language="java" pageEncoding="utf-8"%> <!DOCTY ...

  4. [Web 前端] 使用yarn代替npm作为node.js的模块管理器

    cp from : https://www.jianshu.com/p/bfe96f89da0e     Fast, reliable, and secure dependency managemen ...

  5. protobuf示例

    Google protobuf 是一个高性能的序列化结构化数据存储格式的接口描述语言,具有多语言支持,协议数据小,方便传输,高性能等特点.通过将结构化数据序列化(串行化)成二进制数组,并将二进制数组反 ...

  6. sql server获取标识,获取最后ID IDENT_CURRENT、IDENTITY、SCOPE_IDENTITY区别

    概念解释 IDENT_CURRENT returns the last identity value generated for a specific table in any session and ...

  7. Verilog 加法器和减法器(5)

    前面二进制加法运算,我们并没有提操作数是有符号数,还是无符号数.其实前面的二进制加法对于有符号数和无符号数都成立.比如前面的8位二进制加法运算,第一张图我们选radix是unsigned,表示无符号加 ...

  8. AndroidManifest.xml文件解析(转帖)

    原帖地址:http://www.cnblogs.com/pilang/archive/2011/04/20/2022932.html 一.关于AndroidManifest.xml       And ...

  9. 第三十二章 elk(3)- broker架构 + 引入logback

    实际中最好用的日志框架是logback,我们现在会直接使用logback通过tcp协议向logstash-shipper输入日志数据.在上一节的基础上修改!!! 一.代码 1.pom.xml < ...

  10. Spring(十八):Spring AOP(二):通知(前置、后置、返回、异常、环绕)

    AspectJ支持5种类型的通知注解: @Before:前置通知,在方法执行之前执行: @After:后置通知,在方法执行之后执行: @AfterRunning:返回通知,在方法返回结果之后执行(因此 ...