poj - 1191 - 棋盘切割(dp)
题意:将一个8*8的棋盘(每一个单元正方形有个分值)沿直线(竖或横)割掉一块,留下一块,对留下的这块继续这样操作,总共进行n - 1次,得到n块(1 < n < 15)矩形,每一个矩形的分值就是单元正方形的分值的和,问这n个矩形的最小均方差。
题目链接: id=1191">http://poj.org/problem? id=1191
——>>此题中。均方差比較,等价于方差比較,等价于平方和比較。
。
状态:dp[x1][y1][x2][y2][i]表示将(x1, y1)到(x2, y2)的矩形切割i次的最小平方和。
状态转移方程:dp[x1][y1][x2][y2][i] = min(dp[x1][y1][j][y2][i - 1] + nSquare[j + 1][y1][x2][y2], dp[j + 1][y1][x2][y2][i - 1] + nSquare[x1][y1][j][y2], );(水平方向分割)
dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][j][i - 1] + nSquare[x1][j + 1][x2][y2], dp[x1][j + 1][x2][y2][i - 1] + nSquare[x1][y1][x2][j]);(竖直方向分割)
两个方向再取最小值。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using std::sqrt;
using std::min; const int WIDTH = 8;
const int MAXN = 15 + 1;
const int INF = 0x3f3f3f3f; int a[WIDTH + 1][WIDTH + 1];
int nSum[WIDTH + 1][WIDTH + 1][WIDTH + 1][WIDTH + 1];
int nSquare[WIDTH + 1][WIDTH + 1][WIDTH + 1][WIDTH + 1];
int dp[WIDTH + 1][WIDTH + 1][WIDTH + 1][WIDTH + 1][MAXN]; void Init()
{
memset(nSum, 0, sizeof(nSum));
for (int x1 = 1; x1 <= WIDTH; ++x1)
{
for (int y1 = 1; y1 <= WIDTH; ++y1)
{
for (int x2 = x1; x2 <= WIDTH; ++x2)
{
for (int y2 = y1; y2 <= WIDTH; ++y2)
{
nSum[x1][y1][x2][y2] = nSum[x1][y1][x2 - 1][y2] + nSum[x1][y1][x2][y2 - 1] - nSum[x1][y1][x2 - 1][y2 - 1] + a[x2][y2];
nSquare[x1][y1][x2][y2] = nSum[x1][y1][x2][y2] * nSum[x1][y1][x2][y2];
dp[x1][y1][x2][y2][0] = nSquare[x1][y1][x2][y2];
}
}
}
}
} void Dp(int n)
{
for (int i = 1; i <= n - 1; ++i)
{
for (int x1 = WIDTH; x1 >= 1; --x1)
{
for (int y1 = 1; y1 <= WIDTH; ++y1)
{
for (int x2 = x1; x2 <= WIDTH; ++x2)
{
for (int y2 = y1; y2 <= WIDTH; ++y2)
{
dp[x1][y1][x2][y2][i] = INF;
for (int j = x1; j < x2; ++j)
{
dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][y2][i], dp[x1][y1][j][y2][i - 1] + nSquare[j + 1][y1][x2][y2]);
dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][y2][i], dp[j + 1][y1][x2][y2][i - 1] + nSquare[x1][y1][j][y2]);
}
for (int j = y1; j < y2; ++j)
{
dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][y2][i], dp[x1][y1][x2][j][i - 1] + nSquare[x1][j + 1][x2][y2]);
dp[x1][y1][x2][y2][i] = min(dp[x1][y1][x2][y2][i], dp[x1][j + 1][x2][y2][i - 1] + nSquare[x1][y1][x2][j]);
}
}
}
}
}
}
} void Output(int n)
{
double fAvg = 1.0 * nSum[1][1][8][8] / n;
printf("%.3f\n", sqrt(1.0 * dp[1][1][8][8][n - 1] / n - fAvg * fAvg));
} void Read()
{
for (int i = 1; i <= WIDTH; ++i)
{
for (int j = 1; j <= WIDTH; ++j)
{
scanf("%d", &a[i][j]);
}
}
} int main()
{
int n; while (scanf("%d", &n) == 1)
{
Read();
Init();
Dp(n);
Output(n);
} return 0;
}
poj - 1191 - 棋盘切割(dp)的更多相关文章
- poj 1191 棋盘切割 (压缩dp+记忆化搜索)
一,题意: 中文题 二.分析: 主要利用压缩dp与记忆化搜索思想 三,代码: #include <iostream> #include <stdio.h> #include & ...
- poj 1191 棋盘分割(dp + 记忆化搜索)
题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方 ...
- POJ 1191 棋盘分割(DP)
题目链接 大体思路看,黑书...其他就是注意搞一个in数组,这样记忆化搜索,貌似比较快. #include <cstdio> #include <cstring> #inclu ...
- HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索
题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析: 枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...
- POJ 1191 棋盘分割 【DFS记忆化搜索经典】
题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submission ...
- POJ - 1191 棋盘分割 记忆递归 搜索dp+数学
http://poj.org/problem?id=1191 题意:中文题. 题解: 1.关于切割的模拟,用递归 有这样的递归方程(dp方程):f(n,棋盘)=f(n-1,待割的棋盘)+f(1,割下的 ...
- (中等) POJ 1191 棋盘分割,DP。
Description 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...
- POJ 1191 棋盘分割(DP)
题目链接 题意 : 中文题不详述. 思路 : 黑书上116页讲的很详细.不过你需要在之前预处理一下面积,那样的话之后列式子比较方便一些. 先把均方差那个公式变形, 另X表示x的平均值,两边平方得 平均 ...
- POJ 1191 棋盘分割 (区间DP,记忆化搜索)
题面 思路:分析公式,我们可以发现平均值那一项和我们怎么分的具体方案无关,影响答案的是每个矩阵的矩阵和的平方,由于数据很小,我们可以预处理出每个矩阵的和的平方,执行状态转移. 设dp[l1][r1][ ...
随机推荐
- WordPress主题开发:截取标题或内容
截取可以用wp_trim_words() 用法: <?php $trimmed = wp_trim_words( $text, $num_words = 55, $more = null ); ...
- NoSQL现状
经过了至少4年的激烈争论,现在是对NoSQL的现状做一个阶段性结论的时候了.围绕着NoSQL发生了如此之多的事情,以至于很难对其作出一个简单概括,也很难判断它达到了什么目标以及在什么方面没有达到预期. ...
- Java并发编程的艺术(一)——并发编程需要注意的问题
并发是为了提升程序的执行速度,但并不是多线程一定比单线程高效,而且并发编程容易出错.若要实现正确且高效的并发,就要在开发过程中时刻注意以下三个问题: 上下文切换 死锁 资源限制 接下来会逐一分析这三个 ...
- 抢票季:吐槽12306 & 分享抢票经验
又是一年一度的春运抢票季,不管你是北上.南下或者东进,在外漂泊了一年,有钱没钱总是要回家过年的. [图片来源于网络] 吐槽:12306抢票的悲伤 据说12306改版了,新版本里面除了UI这些面儿上的改 ...
- easyUi 的DataGrid的绑定
html代码: @{ ViewBag.Title = "Index"; Layout = "~/Views/Shared/_Index_Layout.cshtml&quo ...
- Kubernetes 存储系统 Storage 介绍
本文环境为Kubernetes V1.11,操作系统版本为 CentOs 7.3,Kubernetes集群安装可以参考 kubeadm安装kubernetes V1.11.1 集群 容器中的存储都是临 ...
- Mac下使用XLD转换无损音乐Ape
最近想要给音乐库增加一些音乐,下载了一些Ape格式的无损音乐,但是无法直接导入到iTunes中,必须经过其他工具转换成苹果的无损格式,XLD就是这样一款工具.XLD的下载和安装非常方便,直接将APP拖 ...
- how to use perf
Since I did't see here anything about perf which is a relatively new tool for profiling the kernel a ...
- 样条之CatmullRom
所谓样条曲线是指给定一组控制点而得到一条曲线,曲线的大致形状由这些点予以控制,一般可分为插值样条和逼近样条两种,插值样条通常用于数字化绘图或动画的设计,逼近样条一般用来构造物体的表面.CatmullR ...
- Hadoop家族学习路线、实践案例
作者:Han Hsiao链接:https://www.zhihu.com/question/19795366/answer/24524910来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...