flume系统使用以及与storm的初步整合
2016-06-21 13:00:06,890 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:164)] Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/172.16.79.12:44444]
2016-06-21 13:00:28,905 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:94)] Event: { headers:{} body: 61 62 63 64 65 0D abcde. }
规划配置flume用于日志收集

zhenmq-agent.sources = zhenmq-source
zhenmq-agent.sinks = zhenmq-sink
zhenmq-agent.channels = zhenmq-channel # Describe/configure the source
zhenmq-agent.sources.zhenmq-source.type = exec
zhenmq-agent.sources.zhenmq-source.command = tail -F /usr/local/tomcat/tomcat-zhenmq/logs/apilog/common-all.log # Describe the sink
zhenmq-agent.sinks.zhenmq-sink.type = logger # Use a channel which buffers events in memory
zhenmq-agent.channels.zhenmq-channel.type = memory
zhenmq-agent.channels.zhenmq-channel.capacity = 1000
zhenmq-agent.channels.zhenmq-channel.transactionCapacity = 100 # Bind the source and sink to the channel
zhenmq-agent.sources.zhenmq-source.channels = zhenmq-channel
zhenmq-agent.sinks.zhenmq-sink.channel = zhenmq-channel
# Describe the sink
zhenmq-agent.sinks.zhenmq-sink.type = avro
zhenmq-agent.sinks.zhenmq-sink.hostname = 192.168.1.12
zhenmq-agent.sinks.zhenmq-sink.port = 23004 collector-agent.sources.collector-source.type = avro
collector-agent.sources.collector-source.bind= 192.168.1.13
collector-agent.sources.collector-source.port = 23004
org.apache.flume.EventDeliveryException: Failed to send events
at org.apache.flume.sink.AbstractRpcSink.process(AbstractRpcSink.java:392)
at org.apache.flume.sink.DefaultSinkProcessor.process(DefaultSinkProcessor.java:68)
at org.apache.flume.SinkRunner$PollingRunner.run(SinkRunner.java:147)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.flume.FlumeException: NettyAvroRpcClient { host: 192.168.1.163, port: 23004 }: RPC connection error
at org.apache.flume.api.NettyAvroRpcClient.connect(NettyAvroRpcClient.java:182)
at org.apache.flume.api.NettyAvroRpcClient.connect(NettyAvroRpcClient.java:121)
at org.apache.flume.api.NettyAvroRpcClient.configure(NettyAvroRpcClient.java:638)
at org.apache.flume.api.RpcClientFactory.getInstance(RpcClientFactory.java:89)
at org.apache.flume.sink.AvroSink.initializeRpcClient(AvroSink.java:127)
at org.apache.flume.sink.AbstractRpcSink.createConnection(AbstractRpcSink.java:211)
at org.apache.flume.sink.AbstractRpcSink.verifyConnection(AbstractRpcSink.java:272)
at org.apache.flume.sink.AbstractRpcSink.process(AbstractRpcSink.java:349)
... 3 more
Caused by: java.io.IOException: Error connecting to /192.168.1.163:23004
at org.apache.avro.ipc.NettyTransceiver.getChannel(NettyTransceiver.java:261)
at org.apache.avro.ipc.NettyTransceiver.<init>(NettyTransceiver.java:203)
at org.apache.avro.ipc.NettyTransceiver.<init>(NettyTransceiver.java:152)
at org.apache.flume.api.NettyAvroRpcClient.connect(NettyAvroRpcClient.java:168)
... 10 more
Caused by: java.net.ConnectException: 拒绝连接
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
at org.jboss.netty.channel.socket.nio.NioClientSocketPipelineSink$Boss.connect(NioClientSocketPipelineSink.java:496)
at org.jboss.netty.channel.socket.nio.NioClientSocketPipelineSink$Boss.processSelectedKeys(NioClientSocketPipelineSink.java:452)
at org.jboss.netty.channel.socket.nio.NioClientSocketPipelineSink$Boss.run(NioClientSocketPipelineSink.java:365)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
... 1 more
2016-06-22 18:48:30,179 (New I/O server boss #1 ([id: 0xb85f59b4, /192.168.1.163:23004])) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0xf57de901, /192.168.1.162:52778 => /192.168.1.163:23004] OPEN
2016-06-22 18:48:30,181 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0xf57de901, /192.168.1.162:52778 => /192.168.1.163:23004] BOUND: /192.168.1.163:23004
2016-06-22 18:48:30,181 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0xf57de901, /192.168.1.162:52778 => /192.168.1.163:23004] CONNECTED: /192.168.1.162:52778


配置故障转移
zhenmq-agent.sources = zhenmq-source
zhenmq-agent.sinks = collector-sink1 collector-sink2
zhenmq-agent.channels = zhenmq-channel # Describe/configure the source
zhenmq-agent.sources.zhenmq-source.type = exec
zhenmq-agent.sources.zhenmq-source.command = tail -F /usr/local/tomcat/tomcat-zhenmq/logs/apilog/common-all.log # Describe the sink
zhenmq-agent.sinks.collector-sink1.type = avro
zhenmq-agent.sinks.collector-sink1.channel= zhenmq-channel
zhenmq-agent.sinks.collector-sink1.hostname = 192.168.1.163
zhenmq-agent.sinks.collector-sink1.port = 23004 zhenmq-agent.sinks.collector-sink2.type = avro
zhenmq-agent.sinks.collector-sink2.channel= zhenmq-channel
zhenmq-agent.sinks.collector-sink2.hostname = 192.168.1.165
zhenmq-agent.sinks.collector-sink2.port = 23004 # Use a channel which buffers events in memory
zhenmq-agent.channels.zhenmq-channel.type = memory
zhenmq-agent.channels.zhenmq-channel.capacity = 1000
zhenmq-agent.channels.zhenmq-channel.transactionCapacity = 100 zhenmq-agent.sinkgroups = g1
zhenmq-agent.sinkgroups.g1.sinks = collector-sink1 collector-sink2 zhenmq-agent.sinkgroups.g1.processor.type = failover
zhenmq-agent.sinkgroups.g1.processor.priority.collector-sink1 = 10
zhenmq-agent.sinkgroups.g1.processor.priority.collector-sink2 = 11
Flume连接到Storm

flume-agent.source.type=avro
flume-agent.channel.type=memory
flume-agent.source.bind=127.0.0.1
flume-agent.source.port=10101
flumeAgentProps = StormEmbeddedAgentConfiguration.configure(
FLUME_AGENT_NAME, flumeAgentProps);
MaterializedConfiguration conf = configurationProvider.get(
getFlumePropertyPrefix(), flumeAgentProps); Map<String, Channel> channels = conf.getChannels();
if (channels.size() != 1) {
throw new FlumeException("Expected one channel and got "
+ channels.size());
}
Map<String, SourceRunner> sources = conf.getSourceRunners();
if (sources.size() != 1) {
throw new FlumeException("Expected one source and got "
+ sources.size());
} this.sourceRunner = sources.values().iterator().next();
this.channel = channels.values().iterator().next(); if (sinkCounter == null) {
sinkCounter = new SinkCounter(FlumeSpout.class.getName());
}
for (int i = 0; i < this.batchSize; i++) {
Event event = channel.take();
if (event == null) {
break;
}
batch.add(event);
}
for (Event event : batch) {
Values vals = this.getTupleProducer().toTuple(event);
this.collector.emit(vals);
this.pendingMessages.put(
event.getHeaders().get(Constants.MESSAGE_ID), event);
LOG.debug("NextTuple:"
+ event.getHeaders().get(Constants.MESSAGE_ID));
}
/*
* When a message is succeeded remove from the pending list
*
* @see backtype.storm.spout.ISpout#ack(java.lang.Object)
*/
public void ack(Object msgId) {
this.pendingMessages.remove(msgId.toString());
} /*
* When a message fails, retry the message by pushing the event back to channel.
* Note: Please test this situation...
*
* @see backtype.storm.spout.ISpout#fail(java.lang.Object)
*/
public void fail(Object msgId) {
//on a failure, push the message from pending to flume channel; Event ev = this.pendingMessages.get(msgId.toString());
if(null != ev){
this.channel.put(ev);
}
}
private RpcClient rpcClient;
private FlumeEventProducer flumeEventProducer;
<!--?xml version="1.0" encoding="UTF-8" standalone="no"?-->
2016-07-06 11:14:19,951 (pool-5-thread-1) [INFO - org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:376)] Command [tail -F /usr/local/tomcat/tomcat-shopapi/logs/apilog/common-warn.log] exited with 137
| restartThrottle | 10000 | Amount of time (in millis) to wait before attempting a restart |
| restart | false | Whether the executed cmd should be restarted if it dies |
flume系统使用以及与storm的初步整合的更多相关文章
- Twitter的流处理器系统Heron——升级的storm,可以利用mesos来进行资源调度
2011年,Twitter发布了开源的分布式流计算系统Storm.四年后,随着用户数量的急剧增加,Twitter每天要处理的事件已经增加到十亿以上.Storm系统应对如此庞大而复杂多样的流数据变得十分 ...
- Redis进阶实践之七Redis和Lua初步整合使用(转载 7)
Redis进阶实践之七Redis和Lua初步整合使用 一.引言 Redis学了一段时间了,基本的东西都没问题了.从今天开始讲写一些redis和lua脚本的相关的东西,lua这个脚本是一个好东西,可以运 ...
- storm和kafka整合
storm和kafka整合 依赖 <dependency> <groupId>org.apache.storm</groupId> <artifactId&g ...
- Flume+Kafka+storm的连接整合
Flume-ng Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume的文档可以看http://flume.apache.org/FlumeUserGuide.html ...
- storm学习初步
本文根据自己的了解,对学习storm所需的一些知识进行汇总,以备之后详细了解. maven工具 参考书目 Maven权威指南 官方文档 Vagrant 分布式开发环境 博客 storm 参考书目 Ge ...
- Linux系统_Linux平台“盖茨木马”初步了解
静态分析: # file Yang Yang: ELF -bit LSB executable, Intel , version (SYSV), statically linked, , not st ...
- 大数据学习——Storm+Kafka+Redis整合
1 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="h ...
- Redis进阶实践之七Redis和Lua初步整合使用
一.引言 Redis学了一段时间了,基本的东西都没问题了.从今天开始讲写一些redis和lua脚本的相关的东西,lua这个脚本是一个好东西,可以运行在任何平台上,也可以嵌入到大多数语言当 ...
- Spring Data初步--整合Hibernate
Spring Data课程中的技术介绍 Hibernate: Hibernate 是一个开放源代码的对象关系映射框架,它对 JDBC 进行了非常轻量级的对象封装,它将 pojo 与数据库表建立映射关系 ...
随机推荐
- xampp for mac 本地服务器的使用
1.下载xampp安装包 ,百度搜索下载合适版本安装包 2. 安装.下一步 ...->完成 3. 打开看到xampp启动页面. 打开你安装的路径:我这里的路径是:C:\xampp: 找见xamp ...
- [Spring Boot] Spring Boot启动过程源码分析
关于Spring Boot,已经有很多介绍其如何使用的文章了,本文从源代码(基于Spring-boot 1.5.6)的角度来看看Spring Boot的启动过程到底是怎么样的,为何以往纷繁复杂的配置到 ...
- PHP中redis的使用
redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合)和zset(有序集合).这些数据类 ...
- 3.2 shell输入输出
shell输入与输出: read : read语句可以从键盘或者文件的某一行文本中读入信息,并将其赋值给一个变量. read var1 var2 ... 若只指定了一个变量,那么read将 ...
- Web Components 是什么
/********************************************************************************* * Web Components ...
- 【error】segmentation fault分析
前言 调试代码的时候,可能会出现segmentation fault的bug,很难找到原因,在此总结一下可能的原因. SIGSEGV 原因分析 1.程序中的变量没有进行检查: 比如,没有对变量的大小进 ...
- DoTween可视化编程用法详解
DoTween可视化编辑 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) Chinar -- 心分享.心创新 ...
- java反射机制的作用与优点
java的反射机制就是增加程序的灵活性,避免将程序写死到代码里,例如: 实例化一个 person()对象, 不使用反射, new person(); 如果想变成 实例化 其他类, 那么必须修改源代码, ...
- HTTP、TCP、UDP以及SOCKET
HTTP.TCP.UDP以及SOCKET 一.TCP/IP代表传输控制协议/网际协议,指的是一系列协组. 可分为四个层次:数据链路层.网络层.传输层和应用层. 在网络层:有IP协议.ICMP协议.AR ...
- CTF竞赛(简介)
一.解体模式(Jeopardy) 可通过互联网或现场网络参与,解决网络安全技术挑战题目,并以分值和时间排名. 题目主要包括:逆向,漏洞挖掘与利用,web渗透,密码,取证,隐写,安全编程 二.攻防模式( ...
