Bloom filter

  适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

  基本原理及要点:
  对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

  还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

  举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

  注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

  扩展:
  Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

  问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

  根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

=======================================================================================

以下内容来自:

http://blog.csdn.net/jiaomeng/article/details/1495500

================================================================================================================

Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。

集合表示和元素查询

下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0。

为了表达S={x1, x2,…,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为1(1≤i≤k)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位)。

在判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有hi(y)的位置都是1(1≤i≤k),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素。y2或者属于这个集合,或者刚好是一个false positive。

错误率估计

前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x1, x2,…,xn}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:

其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位还是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p = e-kn/m是为了简化运算,这里用到了计算e时常用的近似:

令ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(false positive rate)为:

(1-ρ)为位数组中1的比例,(1-ρ)k就表示k次哈希都刚好选中1的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明[2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将p和p’代入上式中,得:

相比p’和f’,使用p和f通常在分析中更为方便。

最优的哈希函数个数

既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

先用p和f进行计算。注意到f = exp(k ln(1 − e−kn/m)),我们令g = k ln(1 − e−kn/m),只要让g取到最小,f自然也取到最小。由于p = e-kn/m,我们可以将g写成

根据对称性法则可以很容易看出当p = 1/2,也就是k = ln2· (m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2)≈ (0.6185)m/n。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

需要强调的一点是,p = 1/2时错误率最小这个结果并不依赖于近似值p和f。同样对于f’ = exp(k ln(1 − (1 − 1/m)kn)),g’ = k ln(1 − (1 − 1/m)kn),p’ = (1 − 1/m)kn,我们可以将g’写成

同样根据对称性法则可以得到当p’ = 1/2时,g’取得最小值。

位数组的大小

下面我们来看看,在不超过一定错误率的情况下,Bloom Filter至少需要多少位才能表示全集中任意n个元素的集合。假设全集中共有u个元素,允许的最大错误率为є,下面我们来求位数组的位数m。

假设X为全集中任取n个元素的集合,F(X)是表示X的位数组。那么对于集合X中任意一个元素x,在s = F(X)中查询x都能得到肯定的结果,即s能够接受x。显然,由于Bloom Filter引入了错误,s能够接受的不仅仅是X中的元素,它还能够є (u - n)个false positive。因此,对于一个确定的位数组来说,它能够接受总共n + є (u - n)个元素。在n + є (u - n)个元素中,s真正表示的只有其中n个,所以一个确定的位数组可以表示

个集合。m位的位数组共有2m个不同的组合,进而可以推出,m位的位数组可以表示

个集合。全集中n个元素的集合总共有

个,因此要让m位的位数组能够表示所有n个元素的集合,必须有

即:

上式中的近似前提是n和єu相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于є的情况下,m至少要等于n log2(1/є)才能表示任意n个元素的集合。

上一小节中我们曾算出当k = ln2· (m/n)时错误率f最小,这时f = (1/2)= (1/2)mln2 / n。现在令f≤є,可以推出

这个结果比前面我们算得的下界n log2(1/є)大了loge ≈ 1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过є,m至少需要取到最小值的1.44倍。

总结

在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。Bloom Filter在时间空间这两个因素之外又引入了另一个因素:错误率。在使用Bloom Filter判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(False Positive),但不会把属于这个集合的元素误认为不属于这个集合(False Negative)。在增加了错误率这个因素之后,Bloom Filter通过允许少量的错误来节省大量的存储空间。

自从Burton Bloom在70年代提出Bloom Filter之后,Bloom Filter就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展,Bloom Filter在网络领域获得了新生,各种Bloom Filter变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现,Bloom Filter必将获得更大的发展。

参考资料

[1] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. Internet Mathematics, 1(4):485–509, 2005.

[2] M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Transactions on Networking 10:5 (2002), 604—612.

[3] www.cs.jhu.edu/~fabian/courses/CS600.624/slides/bloomslides.pdf

[4] http://166.111.248.20/seminar/2006_11_23/hash_2_yaxuan.ppt

Bloom Filter(布隆过滤器)的概念和原理的更多相关文章

  1. 【转】Bloom Filter布隆过滤器的概念和原理

    转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的 ...

  2. Bloom Filter布隆过滤器原理和实现(1)

    引子 <数学之美>介绍布隆过滤器非常经典: 在日常生活中,包括设计计算机软件时,经常要判断一个元素是否在一个集合中.比如: 在字处理软件中,需要检查一个英语单词是否拼写正确(也就是要判断它 ...

  3. Bloom Filter 布隆过滤器

    Bloom Filter 是由伯顿.布隆(Burton Bloom)在1970年提出的一种多hash函数映射的快速查找算法.它实际上是一个很长的二进制向量和一些列随机映射函数.应用在数据量很大的情况下 ...

  4. 海量信息库,查找是否存在(bloom filter布隆过滤器)

    Bloom Filter(布隆过滤器) 布隆过滤器用于测试某一元素是否存在于给定的集合中,是一种空间利用率很高的随机数据结构(probabilistic data structure),存在一定的误识 ...

  5. 硬核 | Redis 布隆(Bloom Filter)过滤器原理与实战

    在Redis 缓存击穿(失效).缓存穿透.缓存雪崩怎么解决?中我们说到可以使用布隆过滤器避免「缓存穿透」. 码哥,布隆过滤器还能在哪些场景使用呀? 比如我们使用「码哥跳动」开发的「明日头条」APP 看 ...

  6. 大数据处理算法--Bloom Filter布隆过滤

    1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很 ...

  7. 布隆过滤器 Bloom Filter 2

    date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...

  8. 浅谈布隆过滤器Bloom Filter

    先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...

  9. 布隆过滤器redis缓存

    Bloom Filter布隆过滤器算法背景如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构 ...

随机推荐

  1. 21 模块(collections,time,random,os,sys)

    关于模块importfrom xxx import xxx2. Collections1. Counter 计数器2. 栈: 先进后出.队列:先进先出deque:双向队列3. defaultdict ...

  2. 『cs231n』作业3问题2选讲_通过代码理解LSTM网络

    LSTM神经元行为分析 LSTM 公式可以描述如下: itftotgtctht=sigmoid(Wixxt+Wihht−1+bi)=sigmoid(Wfxxt+Wfhht−1+bf)=sigmoid( ...

  3. MyBatis Generator自动创建代码

    MyBatis Generator自动创建代码 1.首先在eclipse上安装mybatis插件 2.创建一个mavenWeb项目. 3.在resource中写入一个xml,一定要与我得同名 < ...

  4. OC 点语法和变量作用域

    一.点语法 (一)认识点语法 声明一个Person类: 1 #import <Foundation/Foundation.h> 2 3 @interface Person : NSObje ...

  5. ora2pg安装及卸载

    --ora2pg安装 tar xzf ora2pg-10.x.tar.gz  or tar xjf ora2pg-10.x.tar.bz2 cd ora2pg-10.x/ perl Makefile. ...

  6. 快速SQL调优/优化(SQL TUNING)——1分钟搞定超慢SQL

    前几天,一个用户的研发人员找到我了,说他们有个SQL语句非常慢,我说多慢?他们说:半个小时也没出结果.于是问他们要了SQL语句和执行计划,SQL语句就不能再这里贴出来了,下面是调整前的执行计划(略去某 ...

  7. 有名管道mkfifo

    int mkfifo(const char *pathname, mode_t mode); int mknod(const char *pathname, mode_t mode, dev_t de ...

  8. Inno Setup 编译器操作

    Inno Setup 编译器 1◆ 下载inno ha_innosetup5502_skygz_DownG.com 2◆ 安装 next 3◆ 操作 success 4◆ 测试安装 5◆ 卸载 uni ...

  9. VS2010创建动态链接库(DLL)的方法

    1.第一步创建WIN32项目,选择DLL 2.第二步,创建你自己的DLL CPP文件和头文件,下面以两个简单的加减法函数为例子导出 然后编译生成即可.DLL文件在Debug或Release目录中 .d ...

  10. lucene4 Filter

    摘要: 关于过滤方面的知识,也就是Filter,如果了解Solr的朋友们,肯定都会知道Solr里面fq这个参数,这个参数的作用其实就是lucene里面的过滤,对一些q参数查询的结果集,做过滤或者限制返 ...