hive 分区表
hive中创建分区表没有什么复杂的分区类型(范围分区、列表分区、hash分区、混合分区等)。分区列也不是表中的一个实际的字段,而是一个或者多个伪列。意思是说在表的数据文件中实际上并不保存分区列的信息与数据。
下面的语句创建了一个简单的分区表:
create table partition_test
(member_id string,
name string
)
partitioned by (
stat_date string,
province string)
row format delimited fields terminated by ',';
这个例子中创建了stat_date和province两个字段作为分区列。通常情况下需要先预先创建好分区,然后才能使用该分区,例如:
alter table partition_test add partition (stat_date='20110728',province='zhejiang');
这样就创建好了一个分区。这时我们会看到hive在HDFS存储中创建了一个相应的文件夹:
$ hadoop fs -ls /user/hive/warehouse/partition_test/stat_date=20110728
Found 1 items
drwxr-xr-x - admin supergroup 0 2011-07-29 09:53 /user/hive/warehouse/partition_test/stat_date=20110728/province=zhejiang
每一个分区都会有一个独立的文件夹,下面是该分区所有的数据文件。在这个例子中stat_date是主层次,province是副层次,所有stat_date='20110728',而province不同的分区都会在/user/hive/warehouse/partition_test/stat_date=20110728 下面,而stat_date不同的分区都会在/user/hive/warehouse/partition_test/ 下面,如:
$ hadoop fs -ls /user/hive/warehouse/partition_test/
Found 2 items
drwxr-xr-x - admin supergroup 0 2011-07-28 19:46 /user/hive/warehouse/partition_test/stat_date=20110526
drwxr-xr-x - admin supergroup 0 2011-07-29 09:53 /user/hive/warehouse/partition_test/stat_date=20110728
注意,因为分区列的值要转化为文件夹的存储路径,所以如果分区列的值中包含特殊值,如 '%', ':', '/', '#',它将会被使用%加上2字节的ASCII码进行转义,如:
hive> alter table partition_test add partition (stat_date='2011/07/28',province='zhejiang');
OK
Time taken: 4.644 seconds
$hadoop fs -ls /user/hive/warehouse/partition_test/
Found 3 items
drwxr-xr-x - admin supergroup 0 2011-07-29 10:06 /user/hive/warehouse/partition_test/stat_date=2011/07/28
drwxr-xr-x - admin supergroup 0 2011-07-28 19:46 /user/hive/warehouse/partition_test/stat_date=20110526
drwxr-xr-x - admin supergroup 0 2011-07-29 09:53 /user/hive/warehouse/partition_test/stat_date=20110728
我使用一个辅助的非分区表partition_test_input准备向partition_test中插入数据:
hive> desc partition_test_input;
OK
stat_date string
member_id string
name string
province string
hive> select * from partition_test_input;
OK
20110526 1 liujiannan liaoning
20110526 2 wangchaoqun hubei
20110728 3 xuhongxing sichuan
20110728 4 zhudaoyong henan
20110728 5 zhouchengyu heilongjiang
然后我向partition_test的分区中插入数据:
hive> insert overwrite table partition_test partition(stat_date='20110728',province='henan') select member_id,name from partition_test_input where stat_date='20110728' and province='henan';
Total MapReduce jobs = 2
...
1 Rows loaded to partition_test
OK
还可以同时向多个分区插入数据,0.7版本以后不存在的分区会自动创建,0.6之前的版本官方文档上说必须要预先创建好分区:
hive>
> from partition_test_input
> insert overwrite table partition_test partition (stat_date='20110526',province='liaoning')
> select member_id,name where stat_date='20110526' and province='liaoning'
> insert overwrite table partition_test partition (stat_date='20110728',province='sichuan')
> select member_id,name where stat_date='20110728' and province='sichuan'
> insert overwrite table partition_test partition (stat_date='20110728',province='heilongjiang')
> select member_id,name where stat_date='20110728' and province='heilongjiang';
Total MapReduce jobs = 4
...
3 Rows loaded to partition_test
OK
特别要注意,在其他数据库中,一般向分区表中插入数据时系统会校验数据是否符合该分区,如果不符合会报错。而在hive中,向某个分区中插入什么样的数据完全是由人来控制的,因为分区键是伪列,不实际存储在文件中,如:
hive> insert overwrite table partition_test partition(stat_date='20110527',province='liaoning') select member_id,name from partition_test_input;
Total MapReduce jobs = 2
...
5 Rows loaded to partition_test
OK
hive> select * from partition_test where stat_date='20110527' and province='liaoning';
OK
1 liujiannan 20110527 liaoning
2 wangchaoqun 20110527 liaoning
3 xuhongxing 20110527 liaoning
4 zhudaoyong 20110527 liaoning
5 zhouchengyu 20110527 liaoning
可以看到在partition_test_input中的5条数据有着不同的stat_date和province,但是在插入到partition(stat_date='20110527',province='liaoning')这个分区后,5条数据的stat_date和province都变成相同的了,因为这两列的数据是根据文件夹的名字读取来的,而不是实际从数据文件中读取来的:
$ hadoop fs -cat /user/hive/warehouse/partition_test/stat_date=20110527/province=liaoning/000000_0
1,liujiannan
2,wangchaoqun
3,xuhongxing
4,zhudaoyong
5,zhouchengyu
下面介绍一下动态分区,因为按照上面的方法向分区表中插入数据,如果源数据量很大,那么针对一个分区就要写一个insert,非常麻烦。况且在之前的版本中,必须先手动创建好所有的分区后才能插入,这就更麻烦了,你必须先要知道源数据中都有什么样的数据才能创建分区。
使用动态分区可以很好的解决上述问题。动态分区可以根据查询得到的数据自动匹配到相应的分区中去。
使用动态分区要先设置hive.exec.dynamic.partition参数值为true,默认值为false,即不允许使用:
hive> set hive.exec.dynamic.partition;
hive.exec.dynamic.partition=false
hive> set hive.exec.dynamic.partition=true;
hive> set hive.exec.dynamic.partition;
hive.exec.dynamic.partition=true
动态分区的使用方法很简单,假设我想向stat_date='20110728'这个分区下面插入数据,至于province插入到哪个子分区下面让数据库自己来判断,那可以这样写:
hive> insert overwrite table partition_test partition(stat_date='20110728',province)
> select member_id,name,province from partition_test_input where stat_date='20110728';
Total MapReduce jobs = 2
...
3 Rows loaded to partition_test
OK
stat_date叫做静态分区列,province叫做动态分区列。select子句中需要把动态分区列按照分区的顺序写出来,静态分区列不用写出来。这样stat_date='20110728'的所有数据,会根据province的不同分别插入到/user/hive/warehouse/partition_test/stat_date=20110728/下面的不同的子文件夹下,如果源数据对应的province子分区不存在,则会自动创建,非常方便,而且避免了人工控制插入数据与分区的映射关系存在的潜在风险。
注意,动态分区不允许主分区采用动态列而副分区采用静态列,这样将导致所有的主分区都要创建副分区静态列所定义的分区:
hive> insert overwrite table partition_test partition(stat_date,province='liaoning')
> select member_id,name,province from partition_test_input where province='liaoning';
FAILED: Error in semantic analysis: Line 1:48 Dynamic partition cannot be the parent of a static partition 'liaoning'
动态分区可以允许所有的分区列都是动态分区列,但是要首先设置一个参数hive.exec.dynamic.partition.mode :
hive> set hive.exec.dynamic.partition.mode;
hive.exec.dynamic.partition.mode=strict
它的默认值是strick,即不允许分区列全部是动态的,这是为了防止用户有可能原意是只在子分区内进行动态建分区,但是由于疏忽忘记为主分区列指定值了,这将导致一个dml语句在短时间内创建大量的新的分区(对应大量新的文件夹),对系统性能带来影响。
所以我们要设置:
hive> set hive.exec.dynamic.partition.mode=nostrick;
删除分区语法
用户可以用 ALTER TABLE DROP PARTITION 来删除分区。分区的元数据和数据将被一并删除。例:
数据加载进分区表中语法:
例:
再介绍3个参数:
hive.exec.max.dynamic.partitions.pernode (缺省值100):每一个mapreduce job允许创建的分区的最大数量,如果超过了这个数量就会报错
hive.exec.max.dynamic.partitions (缺省值1000):一个dml语句允许创建的所有分区的最大数量
hive.exec.max.created.files (缺省值100000):所有的mapreduce job允许创建的文件的最大数量
当源表数据量很大时,单独一个mapreduce job中生成的数据在分区列上可能很分散,举个简单的例子,比如下面的表要用3个map:
1
1
1
2
2
2
3
3
3
如果数据这样分布,那每个mapreduce只需要创建1个分区就可以了:
|1
map1 --> |1
|1
|2
map2 --> |2
|2
|3
map3 --> |3
|3
但是如果数据按下面这样分布,那第一个mapreduce就要创建3个分区:
|1
map1 --> |2
|3
|1
map2 --> |2
|3
|1
map3 --> |2
|3
下面给出了一个报错的例子:
hive> set hive.exec.max.dynamic.partitions.pernode=4;
hive> insert overwrite table partition_test partition(stat_date,province)
> select member_id,name,stat_date,province from partition_test_input distribute by stat_date,province;
Total MapReduce jobs = 1
...
[Fatal Error] Operator FS_4 (id=4): Number of dynamic partitions exceeded hive.exec.max.dynamic.partitions.pernode.. Killing the job.
Ended Job = job_201107251641_0083 with errors
FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.MapRedTask
为了让分区列的值相同的数据尽量在同一个mapreduce中,这样每一个mapreduce可以尽量少的产生新的文件夹,可以借助distribute by的功能,将分区列值相同的数据放到一起:
hive> insert overwrite table partition_test partition(stat_date,province)
> select member_id,name,stat_date,province from partition_test_input distribute by stat_date,province;
Total MapReduce jobs = 1
...
18 Rows loaded to partition_test
OK
hive 分区表的更多相关文章
- 解决Spark读取Hive分区表出现Input path does not exist的问题
假设这里出错的表为test表. 现象 Hive读取正常,不会报错,Spark读取就会出现: org.apache.hadoop.mapred.InvalidInputException: Input ...
- Hadoop: the definitive guide 第三版 拾遗 第十二章 之Hive分区表、桶
Hive分区表 在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念.分区表指的是在创建表时指 ...
- Hive分区表的导入与导出
最近在做一个小任务,将一个CDH平台中Hive的部分数据同步到另一个平台中.毕竟我也刚开始工作,在正式开始做之前,首先进行了一段时间的练习,下面的内容就是练习时写的文档中的内容.如果哪里有错误或者疏漏 ...
- Hive分区表新增字段及修改表名,列名,列注释,表注释,增加列,调整列顺序,属性名等操作
一.Hive分区表新增字段 参考博客:https://blog.csdn.net/yeweiouyang/article/details/44851459 二.Hive修改表名,列名,列注释,表注释, ...
- spark 将dataframe数据写入Hive分区表
从spark1.2 到spark1.3,spark SQL中的SchemaRDD变为了DataFrame,DataFrame相对于SchemaRDD有了较大改变,同时提供了更多好用且方便的API.Da ...
- 如何每日增量加载数据到Hive分区表
如何每日增量加载数据到Hive分区表 hadoop hive shell crontab 加载数据 数据加载到Hive分区表(两个分区,日期(20160316)和小时(10))中 每日加载前一天的日志 ...
- Hive分区表创建,增加及删除
1.创建Hive分区表,按字段分区 CREATE TABLE test1 ( id bigint , create_time timestamp , user_id string) partition ...
- hive中导入json格式的数据(hive分区表)
hive中建立外部分区表,外部数据格式是json的如何导入呢? json格式的数据表不必含有分区字段,只需要在hdfs目录结构中体现出分区就可以了 This is all according to t ...
- Hive分区表动态添加字段
场景描述: 公司埋点项目,数据从接口服务写入kafka集群,再从kafka集群消费写入HDFS文件系统,最后通过Hive进行查询输出.这其中存在一个问题就是:埋点接口中的数据字段是变化,后续会有少量字 ...
随机推荐
- 1月21日 Reference Data Type 数据类型,算法基础说明,二分搜索算法。(课程内容)
Reference Datat Types 引用参考数据类型 -> 组合数据类型 Array, Hash和程序员自定义的复合资料类型 组合数据的修改: 组合数据类型的变量,不是直接存值,而是存一 ...
- hdu-1892-二维BIT
See you~ Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Su ...
- HDOJ1000
#include<iostream> using namespace std; int main() { int a,b; while(cin >> a >> b) ...
- OC Copy基本使用(深拷贝和浅拷贝)
首先,什么是copy? Copy的字面意思是“复制”.“拷贝”,是一个产生副本的过程. 常见的复制有:文件复制,作用是利用一个源文件产生一个副本文件. 特点:1.修改源文件的内容,不会影响副本文件: ...
- POJ 3220 位运算+搜索
转载自:http://blog.csdn.net/lyhypacm/article/details/5813634 DES:相邻的两盏灯状态可以互换,给出初始状态.询问是否能在三步之内到达.如果能的话 ...
- 配置pycharm 一键安装 requirements.txt,一键生成requirements.txt
如上配置 打开项目,在requirements.txt上点右键,就可以安装了. 安装效果如下: 可以看出运行的命令是 C:\Python\Python36/scripts/pip install ...
- python安装大型包时出现错误Unable to find vcvarsall.bat
在windows平台上,据说是安装cpython编写的包时会出现Unable to find vcvarsall.bat这种错误,缺失编译C的环境或组件吧,所以这个包就安装不成功,这个时候简单的方法就 ...
- css rem计算
先抛出一个问题:为什么要选择rem? px:像素是相对于显示器屏幕分辨率而言的相对长度单位.pc端使用px倒也无所谓,可是在移动端,因为手机分辨率种类颇多,不可能一个个去适配,这时px就显得非常无力, ...
- hibernate多对一和一对多关联
关联,是类的实例之间的关系,表示有意义和值得关注的连接. 多对一单向关联: 单向多对一:<many-to-one>定义一个持久化类与另一个持久化类的关联这种关联是数据表间的多对一关联,需要 ...
- hibernate缓存清除(转)
文章有点杂,这不是原文,谢谢贡献者 http://www.360doc.com/content/16/0413/16/32415095_550307388.shtml 一.hibernate一级缓存( ...