hive中创建分区表没有什么复杂的分区类型(范围分区、列表分区、hash分区、混合分区等)。分区列也不是表中的一个实际的字段,而是一个或者多个伪列。意思是说在表的数据文件中实际上并不保存分区列的信息与数据。
下面的语句创建了一个简单的分区表

create table partition_test
(member_id string,
name string
)
partitioned by (
stat_date string,
province string)
row format delimited fields terminated by ',';

这个例子中创建了stat_date和province两个字段作为分区列。通常情况下需要先预先创建好分区,然后才能使用该分区,例如:

alter table partition_test add partition (stat_date='20110728',province='zhejiang');

这样就创建好了一个分区。这时我们会看到hive在HDFS存储中创建了一个相应的文件夹:

$ hadoop fs -ls /user/hive/warehouse/partition_test/stat_date=20110728
Found 1 items
drwxr-xr-x - admin supergroup 0 2011-07-29 09:53 /user/hive/warehouse/partition_test/stat_date=20110728/province=zhejiang

每一个分区都会有一个独立的文件夹,下面是该分区所有的数据文件。在这个例子中stat_date是主层次,province是副层次,所有stat_date='20110728',而province不同的分区都会在/user/hive/warehouse/partition_test/stat_date=20110728 下面,而stat_date不同的分区都会在/user/hive/warehouse/partition_test/ 下面,如:

$ hadoop fs -ls /user/hive/warehouse/partition_test/
Found 2 items
drwxr-xr-x - admin supergroup 0 2011-07-28 19:46 /user/hive/warehouse/partition_test/stat_date=20110526
drwxr-xr-x - admin supergroup 0 2011-07-29 09:53 /user/hive/warehouse/partition_test/stat_date=20110728

注意,因为分区列的值要转化为文件夹的存储路径,所以如果分区列的值中包含特殊值,如 '%', ':', '/', '#',它将会被使用%加上2字节的ASCII码进行转义,如:

hive> alter table partition_test add partition (stat_date='2011/07/28',province='zhejiang');
OK
Time taken: 4.644 seconds

$hadoop fs -ls /user/hive/warehouse/partition_test/
Found 3 items
drwxr-xr-x - admin supergroup 0 2011-07-29 10:06 /user/hive/warehouse/partition_test/stat_date=2011/07/28
drwxr-xr-x - admin supergroup 0 2011-07-28 19:46 /user/hive/warehouse/partition_test/stat_date=20110526
drwxr-xr-x - admin supergroup 0 2011-07-29 09:53 /user/hive/warehouse/partition_test/stat_date=20110728

我使用一个辅助的非分区表partition_test_input准备向partition_test中插入数据:

hive> desc partition_test_input;
OK
stat_date string
member_id string
name string
province string

hive> select * from partition_test_input;
OK
20110526 1 liujiannan liaoning
20110526 2 wangchaoqun hubei
20110728 3 xuhongxing sichuan
20110728 4 zhudaoyong henan
20110728 5 zhouchengyu heilongjiang

然后我向partition_test的分区中插入数据:

hive> insert overwrite table partition_test partition(stat_date='20110728',province='henan') select member_id,name from partition_test_input where stat_date='20110728' and province='henan';
Total MapReduce jobs = 2
...
1 Rows loaded to partition_test
OK

还可以同时向多个分区插入数据,0.7版本以后不存在的分区会自动创建,0.6之前的版本官方文档上说必须要预先创建好分区:

hive>
> from partition_test_input
> insert overwrite table partition_test partition (stat_date='20110526',province='liaoning')
> select member_id,name where stat_date='20110526' and province='liaoning'
> insert overwrite table partition_test partition (stat_date='20110728',province='sichuan')
> select member_id,name where stat_date='20110728' and province='sichuan'
> insert overwrite table partition_test partition (stat_date='20110728',province='heilongjiang')
> select member_id,name where stat_date='20110728' and province='heilongjiang';
Total MapReduce jobs = 4
...
3 Rows loaded to partition_test
OK

特别要注意,在其他数据库中,一般向分区表中插入数据时系统会校验数据是否符合该分区,如果不符合会报错。而在hive中,向某个分区中插入什么样的数据完全是由人来控制的,因为分区键是伪列,不实际存储在文件中,如:

hive> insert overwrite table partition_test partition(stat_date='20110527',province='liaoning') select member_id,name from partition_test_input;
Total MapReduce jobs = 2
...
5 Rows loaded to partition_test
OK

hive> select * from partition_test where stat_date='20110527' and province='liaoning';
OK
1 liujiannan 20110527 liaoning
2 wangchaoqun 20110527 liaoning
3 xuhongxing 20110527 liaoning
4 zhudaoyong 20110527 liaoning
5 zhouchengyu 20110527 liaoning

可以看到在partition_test_input中的5条数据有着不同的stat_date和province,但是在插入到partition(stat_date='20110527',province='liaoning')这个分区后,5条数据的stat_date和province都变成相同的了,因为这两列的数据是根据文件夹的名字读取来的,而不是实际从数据文件中读取来的:

$ hadoop fs -cat /user/hive/warehouse/partition_test/stat_date=20110527/province=liaoning/000000_0
1,liujiannan
2,wangchaoqun
3,xuhongxing
4,zhudaoyong
5,zhouchengyu

下面介绍一下动态分区,因为按照上面的方法向分区表中插入数据,如果源数据量很大,那么针对一个分区就要写一个insert,非常麻烦。况且在之前的版本中,必须先手动创建好所有的分区后才能插入,这就更麻烦了,你必须先要知道源数据中都有什么样的数据才能创建分区。
使用动态分区可以很好的解决上述问题。动态分区可以根据查询得到的数据自动匹配到相应的分区中去。 
使用动态分区要先设置hive.exec.dynamic.partition参数值为true,默认值为false,即不允许使用:

hive> set hive.exec.dynamic.partition;
hive.exec.dynamic.partition=false
hive> set hive.exec.dynamic.partition=true;
hive> set hive.exec.dynamic.partition;
hive.exec.dynamic.partition=true

动态分区的使用方法很简单,假设我想向stat_date='20110728'这个分区下面插入数据,至于province插入到哪个子分区下面让数据库自己来判断,那可以这样写:

hive> insert overwrite table partition_test partition(stat_date='20110728',province)
> select member_id,name,province from partition_test_input where stat_date='20110728';
Total MapReduce jobs = 2
...
3 Rows loaded to partition_test
OK

stat_date叫做静态分区列,province叫做动态分区列。select子句中需要把动态分区列按照分区的顺序写出来,静态分区列不用写出来。这样stat_date='20110728'的所有数据,会根据province的不同分别插入到/user/hive/warehouse/partition_test/stat_date=20110728/下面的不同的子文件夹下,如果源数据对应的province子分区不存在,则会自动创建,非常方便,而且避免了人工控制插入数据与分区的映射关系存在的潜在风险。

注意,动态分区不允许主分区采用动态列而副分区采用静态列,这样将导致所有的主分区都要创建副分区静态列所定义的分区:

hive> insert overwrite table partition_test partition(stat_date,province='liaoning')
> select member_id,name,province from partition_test_input where province='liaoning';
FAILED: Error in semantic analysis: Line 1:48 Dynamic partition cannot be the parent of a static partition 'liaoning'

动态分区可以允许所有的分区列都是动态分区列,但是要首先设置一个参数hive.exec.dynamic.partition.mode :

hive> set hive.exec.dynamic.partition.mode;
hive.exec.dynamic.partition.mode=strict

它的默认值是strick,即不允许分区列全部是动态的,这是为了防止用户有可能原意是只在子分区内进行动态建分区,但是由于疏忽忘记为主分区列指定值了,这将导致一个dml语句在短时间内创建大量的新的分区(对应大量新的文件夹),对系统性能带来影响。
所以我们要设置:

hive> set hive.exec.dynamic.partition.mode=nostrick;

删除分区语法

用户可以用 ALTER TABLE DROP PARTITION 来删除分区。分区的元数据和数据将被一并删除。例:

ALTER TABLE day_hour_table DROP PARTITION (dt='2008-08-08', hour='09');

数据加载进分区表中语法

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]

例:

LOAD DATA INPATH '/user/pv.txt' INTO TABLE day_hour_table PARTITION(dt='2008-08- 08', hour='08');
LOAD DATA local INPATH '/user/hua/*' INTO TABLE day_hour partition(dt='2010-07- 07');
当数据被加载至表中时,不会对数据进行任何转换。Load操作只是将数据复制至Hive表对应的位置。数据加载时在表下自动创建一个目录

再介绍3个参数:
hive.exec.max.dynamic.partitions.pernode (缺省值100):每一个mapreduce job允许创建的分区的最大数量,如果超过了这个数量就会报错
hive.exec.max.dynamic.partitions (缺省值1000):一个dml语句允许创建的所有分区的最大数量
hive.exec.max.created.files (缺省值100000):所有的mapreduce job允许创建的文件的最大数量

当源表数据量很大时,单独一个mapreduce job中生成的数据在分区列上可能很分散,举个简单的例子,比如下面的表要用3个map:
1
1
1
2
2
2
3
3
3

如果数据这样分布,那每个mapreduce只需要创建1个分区就可以了: 
         |1
map1 --> |1 
         |1

|2
map2 --> |2 
         |2

|3
map3 --> |3 
         |3
但是如果数据按下面这样分布,那第一个mapreduce就要创建3个分区:

|1
map1 --> |2 
         |3

|1
map2 --> |2 
         |3

|1
map3 --> |2 
         |3

下面给出了一个报错的例子:
hive> set hive.exec.max.dynamic.partitions.pernode=4;
hive> insert overwrite table partition_test partition(stat_date,province)
> select member_id,name,stat_date,province from partition_test_input distribute by stat_date,province;
Total MapReduce jobs = 1
...
[Fatal Error] Operator FS_4 (id=4): Number of dynamic partitions exceeded hive.exec.max.dynamic.partitions.pernode.. Killing the job.
Ended Job = job_201107251641_0083 with errors
FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.MapRedTask

为了让分区列的值相同的数据尽量在同一个mapreduce中,这样每一个mapreduce可以尽量少的产生新的文件夹,可以借助distribute by的功能,将分区列值相同的数据放到一起:

hive> insert overwrite table partition_test partition(stat_date,province)
> select member_id,name,stat_date,province from partition_test_input distribute by stat_date,province;
Total MapReduce jobs = 1
...
18 Rows loaded to partition_test

OK

hive 分区表的更多相关文章

  1. 解决Spark读取Hive分区表出现Input path does not exist的问题

    假设这里出错的表为test表. 现象 Hive读取正常,不会报错,Spark读取就会出现: org.apache.hadoop.mapred.InvalidInputException: Input ...

  2. Hadoop: the definitive guide 第三版 拾遗 第十二章 之Hive分区表、桶

    Hive分区表 在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念.分区表指的是在创建表时指 ...

  3. Hive分区表的导入与导出

    最近在做一个小任务,将一个CDH平台中Hive的部分数据同步到另一个平台中.毕竟我也刚开始工作,在正式开始做之前,首先进行了一段时间的练习,下面的内容就是练习时写的文档中的内容.如果哪里有错误或者疏漏 ...

  4. Hive分区表新增字段及修改表名,列名,列注释,表注释,增加列,调整列顺序,属性名等操作

    一.Hive分区表新增字段 参考博客:https://blog.csdn.net/yeweiouyang/article/details/44851459 二.Hive修改表名,列名,列注释,表注释, ...

  5. spark 将dataframe数据写入Hive分区表

    从spark1.2 到spark1.3,spark SQL中的SchemaRDD变为了DataFrame,DataFrame相对于SchemaRDD有了较大改变,同时提供了更多好用且方便的API.Da ...

  6. 如何每日增量加载数据到Hive分区表

    如何每日增量加载数据到Hive分区表 hadoop hive shell crontab 加载数据 数据加载到Hive分区表(两个分区,日期(20160316)和小时(10))中 每日加载前一天的日志 ...

  7. Hive分区表创建,增加及删除

    1.创建Hive分区表,按字段分区 CREATE TABLE test1 ( id bigint , create_time timestamp , user_id string) partition ...

  8. hive中导入json格式的数据(hive分区表)

    hive中建立外部分区表,外部数据格式是json的如何导入呢? json格式的数据表不必含有分区字段,只需要在hdfs目录结构中体现出分区就可以了 This is all according to t ...

  9. Hive分区表动态添加字段

    场景描述: 公司埋点项目,数据从接口服务写入kafka集群,再从kafka集群消费写入HDFS文件系统,最后通过Hive进行查询输出.这其中存在一个问题就是:埋点接口中的数据字段是变化,后续会有少量字 ...

随机推荐

  1. 『Sklearn』数据划分方法

    原理介绍 K折交叉验证: KFold,GroupKFold,StratifiedKFold, 留一法: LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,Lea ...

  2. ReactJS环境搭建

    1.ReactJs 需要依赖nodejs环境,如果没有安装nodejs的话,需要安装.下载地址:https://nodejs.org/en/download/ 下载下来之后,安装windows版本的m ...

  3. Vscode设置个人爱好

    Vscode设置个人爱好   插件列表 abusaidm.html-snippets-0.1.0 adamwalzer.string-converter-0.0.9 AESSoft.aessoft-c ...

  4. 利用padding-top/padding-bottom百分比,进行占位和高度自适应

    在css里面,padding-top,padding-bottom,margin-top,margin-bottom取值为百分比的时候,参照的是父元素的宽度. 比如:父元素宽度是100px, 子元素p ...

  5. httpclient http状态管理

    HTTP状态管理 最初,Htt被设计成一个无状态的面向请求响应的协议,所以它不能再逻辑相关的http请求/响应中保持状态会话. 由于越来越多的系统使用http协议,其中包括http从来没有想支持的系统 ...

  6. learning docker steps(4) ----- docker swarm 初次体验

    参考:https://docs.docker.com/get-started/part4/ 了解 swarm 集群 swarm 是一组运行 Docker 并且已加入集群中的机器.执行此操作后,您可以继 ...

  7. C语言中的volatile——让我保持原样

    volatile译为:易变的.这不是和题目的让我保持原样矛盾了吗?其实不然,在变量前加上该关键字修饰,确实是告诉编译器,这个变量是一个容易改变的变量,不要对它进行优化,每次都要到变量的地址中去读取变量 ...

  8. Flask初级(五)flash在模板中使用继承,模板的模板

    Project name :Flask_Plan templates:templates static:static 继续上一篇文章. 我们不希望每个页面都写一遍引入js,css,导航条……………… ...

  9. 保存 Mybatis打印的SQL日志到数据库

    之前做项目,一般会有一张,用户操作记录的数据表,里面主要包括一些,用户请求的URL和请求参数,用以记录用户做过哪些事情.并没有以文件的形式来做记录,当然只适合于一些用户量特别少的系统. 而Mybati ...

  10. <NET CLR via c# 第4版>笔记 第15章 枚举类型和位标志

    15.1 枚举类型 枚举定义的符号是常量值. C#编译器编译时,会用数值替换符号,不再引用定义了符号的枚举类型.可能会出现一些版本问题. Enum.IsDefined(Type enumType, o ...