E. Paths and Trees
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.

Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.

You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.

Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.

The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.

Output

In the first line print the minimum total weight of the edges of the tree.

In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.

If there are multiple answers, print any of them.

Examples
input
3 3
1 2 1
2 3 1
1 3 2
3
output
2
1 2
input
4 4
1 2 1
2 3 1
3 4 1
4 1 2
4
output
4
2 3 4
Note

In the first sample there are two possible shortest path trees:

  • with edges 1 – 3 and 2 – 3 (the total weight is 3);
  • with edges 1 – 2 and 2 – 3 (the total weight is 2);

And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.

题目链接:点击传送

题意:给你n个点,m条边,让你求u到所有点的都是最短路,并且使得图的总权值最小;

思路:dij+堆优化,在求最短路的时候多存两个pos,跟w,在保证最短路的情况下,使得w更小即可;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=3e5+,M=1e6+,inf=;
const ll INF=1e18+,mod=;
struct is
{
int v,next,w,pos;
}edge[N<<];
int head[N],edg;
void init()
{
memset(head,-,sizeof(head));
edg=;
}
void add(int u,int v,int w,int pos)
{
edg++;
edge[edg].v=v;
edge[edg].w=w;
edge[edg].pos=pos;
edge[edg].next=head[u];
head[u]=edg;
}
struct mmp
{
int s,pos,w;
ll dis;
mmp(){}
mmp(int ss,ll d,int p,int ww){s=ss,dis=d;pos=p;w=ww;}
bool operator <(const mmp &b)const
{
if(dis!=b.dis)
return dis>b.dis;
return w>b.w;
}
};
ll ans[N],sum;
int vis[N];
priority_queue<mmp>q;
vector<int>out;
void dij(int s)
{
ans[s]=;
q.push(mmp(s,0LL,,));
while(!q.empty())
{
mmp now = q.top();
q.pop();
if(vis[now.s])continue;
sum+=now.w;
out.push_back(now.pos);
vis[now.s]=;
for(int i = head[now.s]; i !=-; i = edge[i].next)
{
int v=edge[i].v;
ll w=edge[i].w;
int p=edge[i].pos;
if(ans[v] >=ans[now.s] + w)
{
q.push(mmp(v,ans[now.s]+w,p,w));
ans[v]=ans[now.s]+w;
}
}
}
}
int main()
{
init();
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w,i);
add(v,u,w,i);
}
int s;
scanf("%d",&s);
for(int i=;i<=n;i++)
ans[i]=INF;
dij(s);
printf("%lld\n",sum);
sort(out.begin(),out.end());
for(int i=;i<out.size();i++)
printf("%d ",out[i]);
return ;
}
 
E. Paths and Trees
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.

Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.

You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.

Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.

The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.

Output

In the first line print the minimum total weight of the edges of the tree.

In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.

If there are multiple answers, print any of them.

Examples
input
3 3
1 2 1
2 3 1
1 3 2
3
output
2
1 2
input
4 4
1 2 1
2 3 1
3 4 1
4 1 2
4
output
4
2 3 4
Note

In the first sample there are two possible shortest path trees:

  • with edges 1 – 3 and 2 – 3 (the total weight is 3);
  • with edges 1 – 2 and 2 – 3 (the total weight is 2);

And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.

 

Codeforces Round #303 (Div. 2)E. Paths and Trees 最短路的更多相关文章

  1. Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心

    题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...

  2. Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  3. 水题 Codeforces Round #303 (Div. 2) D. Queue

    题目传送门 /* 比C还水... */ #include <cstdio> #include <algorithm> #include <cstring> #inc ...

  4. DP Codeforces Round #303 (Div. 2) C. Woodcutters

    题目传送门 /* 题意:每棵树给出坐标和高度,可以往左右倒,也可以不倒 问最多能砍到多少棵树 DP:dp[i][0/1/2] 表示到了第i棵树时,它倒左或右或不动能倒多少棵树 分情况讨论,若符合就取最 ...

  5. 贪心 Codeforces Round #303 (Div. 2) B. Equidistant String

    题目传送门 /* 题意:找到一个字符串p,使得它和s,t的不同的总个数相同 贪心:假设p与s相同,奇偶变换赋值,当是偶数,则有答案 */ #include <cstdio> #includ ...

  6. 水题 Codeforces Round #303 (Div. 2) A. Toy Cars

    题目传送门 /* 题意:5种情况对应对应第i或j辆车翻了没 水题:其实就看对角线的上半边就可以了,vis判断,可惜WA了一次 3: if both cars turned over during th ...

  7. Codeforces Round #303 (Div. 2)

    A.Toy Cars 题意:给出n辆玩具车两两碰撞的结果,找出没有翻车过的玩具车. 思路:简单题.遍历即可. #include<iostream> #include<cstdio&g ...

  8. Codeforces Round #303 (Div. 2)(CF545) E Paths and Trees(最短路+贪心)

    题意 求一个生成树,使得任意点到源点的最短路等于原图中的最短路.再让这个生成树边权和最小. http://codeforces.com/contest/545/problem/E 思路 先Dijkst ...

  9. Codeforces Round #303 (Div. 2) D. Queue 傻逼题

    C. Woodcutters Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/545/probl ...

随机推荐

  1. Selenium之WebdriverApi详解

    获取标签元素 # 通过ID定位目标元素 driver.find_element_by_id('#i1') # 通过classname定位目标元素 driver.find_element_by_clas ...

  2. Hadoop 之日志管理—应用在 YARN 中运行时的日志

    背景: 在写这篇博文前,自己一直没有弄明白一个问题,“在 Map 函数和 Reduce 函数中使用 System.out.print 打印日志时,输出内容在哪里显示?”.试了好多回,在 log/* 目 ...

  3. Integer.valueOf方法的源码解读

    public class IntegerDemo { public static void main(String[] args) { Integer i01 = ; ; Integer i03 = ...

  4. [LeetCode] 458. Poor Pigs_Easy tag: Math

    There are 1000 buckets, one and only one of them contains poison, the rest are filled with water. Th ...

  5. http协议基础(六)报文首部

    http请求和响应报文内容比较多,会分为大概四部分更新,最近比较忙,没太多时间整理- - 首先来看看报文结构吧 1.http请求报文 http请求报文由方法.URI.http版本.http首部字段等构 ...

  6. 使用Linux工作之Fedora KDE

    小明拿着在Windows下不断蓝屏的T440和公司建议不使用云笔记的规定,心下想着,是时候回归linux了... 一.系统的获取与启动盘的制作 fedora20 KDE版 liveusb-creato ...

  7. ac1066

    经过分析后的二分 题目是 Josnch星球是一个赌博之风盛行的星球.每个人一出生就有一定数额的钱,之后的所有收入只能由赌博获得(OMG,如果RP不好,输光了所有的 钱...)假设赌博公司的某场赌博有N ...

  8. python-安装,设置环境变量(win10)

    python官网: https://www.python.org/ 选择需要的版本下载 下载后安装 我装的是默认位置C:\Python27 打开环境变量设置: 右键电脑--->属性----> ...

  9. UVA12558 Egyptian Fractions (HARD version) (埃及分数,迭代加深搜索)

    UVA12558 Egyptian Fractions (HARD version) 题解 迭代加深搜索,适用于无上界的搜索.每次在一个限定范围中搜索,如果无解再进一步扩大查找范围. 本题中没有分数个 ...

  10. PHP 验证码:扭曲+粘连+变形

    一,绪论 由于项目需要,需要加强目前的验证码,我们参照的对象是支付宝. 基于PHP CodeIgniter 框架,代码放置在下面的路径下. /application/libraries 二,主要代码 ...