E. Paths and Trees
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.

Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.

You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.

Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.

The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.

Output

In the first line print the minimum total weight of the edges of the tree.

In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.

If there are multiple answers, print any of them.

Examples
input
3 3
1 2 1
2 3 1
1 3 2
3
output
2
1 2
input
4 4
1 2 1
2 3 1
3 4 1
4 1 2
4
output
4
2 3 4
Note

In the first sample there are two possible shortest path trees:

  • with edges 1 – 3 and 2 – 3 (the total weight is 3);
  • with edges 1 – 2 and 2 – 3 (the total weight is 2);

And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.

题目链接:点击传送

题意:给你n个点,m条边,让你求u到所有点的都是最短路,并且使得图的总权值最小;

思路:dij+堆优化,在求最短路的时候多存两个pos,跟w,在保证最短路的情况下,使得w更小即可;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=3e5+,M=1e6+,inf=;
const ll INF=1e18+,mod=;
struct is
{
int v,next,w,pos;
}edge[N<<];
int head[N],edg;
void init()
{
memset(head,-,sizeof(head));
edg=;
}
void add(int u,int v,int w,int pos)
{
edg++;
edge[edg].v=v;
edge[edg].w=w;
edge[edg].pos=pos;
edge[edg].next=head[u];
head[u]=edg;
}
struct mmp
{
int s,pos,w;
ll dis;
mmp(){}
mmp(int ss,ll d,int p,int ww){s=ss,dis=d;pos=p;w=ww;}
bool operator <(const mmp &b)const
{
if(dis!=b.dis)
return dis>b.dis;
return w>b.w;
}
};
ll ans[N],sum;
int vis[N];
priority_queue<mmp>q;
vector<int>out;
void dij(int s)
{
ans[s]=;
q.push(mmp(s,0LL,,));
while(!q.empty())
{
mmp now = q.top();
q.pop();
if(vis[now.s])continue;
sum+=now.w;
out.push_back(now.pos);
vis[now.s]=;
for(int i = head[now.s]; i !=-; i = edge[i].next)
{
int v=edge[i].v;
ll w=edge[i].w;
int p=edge[i].pos;
if(ans[v] >=ans[now.s] + w)
{
q.push(mmp(v,ans[now.s]+w,p,w));
ans[v]=ans[now.s]+w;
}
}
}
}
int main()
{
init();
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w,i);
add(v,u,w,i);
}
int s;
scanf("%d",&s);
for(int i=;i<=n;i++)
ans[i]=INF;
dij(s);
printf("%lld\n",sum);
sort(out.begin(),out.end());
for(int i=;i<out.size();i++)
printf("%d ",out[i]);
return ;
}
 
E. Paths and Trees
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.

Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.

You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.

Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.

The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.

Output

In the first line print the minimum total weight of the edges of the tree.

In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.

If there are multiple answers, print any of them.

Examples
input
3 3
1 2 1
2 3 1
1 3 2
3
output
2
1 2
input
4 4
1 2 1
2 3 1
3 4 1
4 1 2
4
output
4
2 3 4
Note

In the first sample there are two possible shortest path trees:

  • with edges 1 – 3 and 2 – 3 (the total weight is 3);
  • with edges 1 – 2 and 2 – 3 (the total weight is 2);

And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.

 

Codeforces Round #303 (Div. 2)E. Paths and Trees 最短路的更多相关文章

  1. Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心

    题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...

  2. Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  3. 水题 Codeforces Round #303 (Div. 2) D. Queue

    题目传送门 /* 比C还水... */ #include <cstdio> #include <algorithm> #include <cstring> #inc ...

  4. DP Codeforces Round #303 (Div. 2) C. Woodcutters

    题目传送门 /* 题意:每棵树给出坐标和高度,可以往左右倒,也可以不倒 问最多能砍到多少棵树 DP:dp[i][0/1/2] 表示到了第i棵树时,它倒左或右或不动能倒多少棵树 分情况讨论,若符合就取最 ...

  5. 贪心 Codeforces Round #303 (Div. 2) B. Equidistant String

    题目传送门 /* 题意:找到一个字符串p,使得它和s,t的不同的总个数相同 贪心:假设p与s相同,奇偶变换赋值,当是偶数,则有答案 */ #include <cstdio> #includ ...

  6. 水题 Codeforces Round #303 (Div. 2) A. Toy Cars

    题目传送门 /* 题意:5种情况对应对应第i或j辆车翻了没 水题:其实就看对角线的上半边就可以了,vis判断,可惜WA了一次 3: if both cars turned over during th ...

  7. Codeforces Round #303 (Div. 2)

    A.Toy Cars 题意:给出n辆玩具车两两碰撞的结果,找出没有翻车过的玩具车. 思路:简单题.遍历即可. #include<iostream> #include<cstdio&g ...

  8. Codeforces Round #303 (Div. 2)(CF545) E Paths and Trees(最短路+贪心)

    题意 求一个生成树,使得任意点到源点的最短路等于原图中的最短路.再让这个生成树边权和最小. http://codeforces.com/contest/545/problem/E 思路 先Dijkst ...

  9. Codeforces Round #303 (Div. 2) D. Queue 傻逼题

    C. Woodcutters Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/545/probl ...

随机推荐

  1. PAT 1021 Deepest Root[并查集、dfs][难]

    1021 Deepest Root (25)(25 分) A graph which is connected and acyclic can be considered a tree. The he ...

  2. PAT 1018 Public Bike Management[难]

    链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018  Public ...

  3. python处理图片验证码

    WebDriver中实现对特定的Web区域截图方法 import pytesseract from PIL import Image image=Image.open('new.jpg') vcode ...

  4. Redis 十分钟快速入门

    本教程是一个快速入门教程,所以Redis的命令只是简单介绍了几个常用的,如果有其他需求请求官网查看API 使用. 1. Redis简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的ke ...

  5. mac远程连接windows

    第一步:在Mac上安装Remote Desktop Connection 进入Microsoft Remote Desktop Connection下载安装包. 下载完成之后,双击安装包进行安装. 第 ...

  6. emoj表情过滤

    用法:  isEmojiCharacter(input_value)   //  提交时候校验.true:emoj表情   undefined:无   if(isEmojiCharacter(val) ...

  7. Qt 学习之路 2(55):数据库操作

    Qt 提供了 QtSql 模块来提供平台独立的基于 SQL 的数据库操作.这里我们所说的“平台独立”,既包括操作系统平台,又包括各个数据库平台.另外,我们强调了“基于 SQL”,因为 NoSQL 数据 ...

  8. linux环境下安装tomcat6

    1)下载apache-tomcat-6.0.10.tar.gz 2)#tar -zxvf apache-tomcat-6.0.10.tar.gz ://解压 3)#cp -R apache-tomca ...

  9. 计算概论(A)/基础编程练习1(8题)/7:奇数求和

    #include<stdio.h> int main() { // 输入非负整数 int m, n; scanf("%d %d", &m, &n); / ...

  10. SNMP学习笔记之SNMPv3的报文格式以及基于USM的认证和加密过程

    下面我们就主要讲解SNMPv3的报文格式以及基于USM的认证和加密过程! 1.SNMPv3的消息格式 如下图1: 图 1 其中,整个SNMPv3消息可以使用认证机制,并对EngineID.Contex ...