【[TJOI2014]上升子序列】
这本质上是一个\(dp\)
如果没有"两个上升子序列相同,那么只需要计算一次"这一个性质,那么就很好做了,我们用\(dp[i]\)表示以\(i\)结尾的上升子序列个数,那么就有\(dp[i]=\sum_{j=1}^{i-1}dp[j]\)
这个暴力转移是\(O(n^2)\)的,我们这里可以直接用树状数组来优化,于是就变成了\(O(nlogn)\)
同时由于数字可能非常大,所以需要离散化
之后再来考虑一下如何去重
首先重复的情况肯定是来自于一个之前已经出现过的数,而这个出现的数又将所有之前那个点算出来的答案又都加了一遍,这样就会有重复的了
那我们怎么去掉这些重复的情况呢
首先直接不考虑这个再次出现的数是肯定不对的,如果这个数和它之前出现的那个位置之间有一些比这个数小的的数,那么这些就就没有被计入答案,于是就错了
但是我们可以对每一个数维护一个\(lastans[i]\),表示\(i\)这个数上次被计入答案的时候\(\sum_{j=1}^{i-1}dp[j]\)是多少,之后我们还是用树状数组来查询前缀和,之后我们计入答案的应该就是这次查询出来的答案减去\(lastans\),也就是表示新增的上升子序列的个数是多少,之后我们再把这个数加入树状数组
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#define re register
#define lowbit(x) ((x)&(-(x)))
#define maxn 100005
#define LL long long
#define int long long
const LL mod=1e9+7;
std::map<LL,LL> ma;
LL c[maxn];
int n;
LL a[maxn],b[maxn];
LL lastans[maxn];
int f[maxn];
inline LL read()
{
char c=getchar();
LL x=0,r=1;
while(c<'0'||c>'9')
{
if(c=='-') r=-1;
c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x*r;
}
inline void add(int x,LL v)
{
for(re LL i=x;i<=n;i+=lowbit(i))
c[i]=(c[i]+v)%mod;
}
inline LL query(LL x)
{
LL ans=0;
for(re LL i=x;i;i-=lowbit(i))
ans=(ans+c[i])%mod;
return ans;
}
signed main()
{
n=read();
for(re int i=1;i<=n;i++) a[i]=b[i]=read();
std::sort(b+1,b+n+1);
int tot=std::unique(b+1,b+1+n)-b-1;
for(re int i=1;i<=tot;i++)
ma[b[i]]=i;
LL cnt=0;
for(re int i=1;i<=n;i++)
{
int j=ma[a[i]];
if(!f[j])
{
LL mid=query(j-1);
cnt=(cnt+mid)%mod;
add(j,mid+1);
lastans[j]=mid;
f[j]=1;
continue;
}
LL mid=query(j-1);
cnt=(cnt+mid-lastans[j]+mod)%mod;
add(j,(mid-lastans[j]+2*mod)%mod);
lastans[j]=mid;
}
std::cout<<cnt;
return 0;
}
【[TJOI2014]上升子序列】的更多相关文章
- bzoj5157: [Tjoi2014]上升子序列(树状数组LIS)
5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不 ...
- 【bzoj5157】[Tjoi2014]上升子序列 树状数组
题目描述 求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果. 题解 树状数组 傻逼题,离散化后直接使用树状数组统计即可.由于要求本质不同,因此一个数要减去它前一次出现时的贡献( ...
- BZOJ5157 & 洛谷3970:[TJOI2014]上升子序列——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5157 https://www.luogu.org/problemnew/show/P3970 给定 ...
- [TJOI2014] 上升子序列
刚刚做的时候一看:这不是个傻逼题吗hhhhh....然后发现写完了过不了样例,仔细一看题:同构的算一种. 这可咋办啊? 其实很简单,设f[i] 为 以a[i] 结尾的上升子序列个数,我们考虑当前如果算 ...
- P3970 [TJOI2014]上升子序列
传送门 DP 十分显然的DP,但是不好写 设 f[ i ] 表示以第 i 个数作结尾时的方案数,原序列为 a 如果不考虑相同的序列: 那么转移就是 Σ f[ j ] (0< j < i & ...
- BZOJ5157 [Tjoi2014]上升子序列 【树状数组】
题目链接 BZOJ5157 题解 我们只需计算每个位置为开头产生的贡献大小,就相当于之后每个大于当前位置的位置产生的贡献 + 1之和 离散化后用树状数组维护即可 要注意去重,后面计算的包含之前的,记录 ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
- [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
随机推荐
- Silverlight & Blend动画设计系列七:模糊效果(BlurEffect)与阴影效果(DropShadowEffect)
模糊效果(BlurEffect)与阴影效果(DropShadowEffect)是两个非常实用和常用的两个特效,比如在开发相册中,可以对照片的缩略图添加模糊效果,在放大照片的过程中动态改变照片的大小和模 ...
- c语言printf实现同一位置打印输出
控制台同一位置打印输出,例如:进度1%->100%在同一位置显示.刚学习c语言的时候一直想做起来,可惜查询好多资料不行.时隔6年多,空闲之余又想起这个问题,便决定一试,虽然c语言已经几乎忘光了, ...
- shell脚本报错 value too great for base
此错误是shell脚本在计算以0开头的数字时,默认以8进制进行计算,导致在计算08时超过了8进制的范围,报此错误. shell脚本代码如下: #!/bin/bash a= ..} do a=$[$a+ ...
- Editplus编辑器在php文件中变色显示设置
咋editplus中我们编辑时有时会遇到不变色的问题,那么怎么设置呢,从语法配置就好,如下:
- PHP三维优先级运算
昨天去某大型公司面试,做了一套面试题,整套面试题的基础要求比较高,对于js的使用有一定的要求.在本次面试中碰到PHP三维运算优先级的问题,先看题: <?php $b=20; $c=40; $a= ...
- 禁用F12和鼠标右键,防止查看控制台代码
虽然是个治标不治本的办法,还是挺有用的(对Opera无效,Opera开始控制台是Ctrl+Shift+C) 在禁用同时,自身的代码健壮性也需要加强 // 屏蔽F12 document.onkeydow ...
- 如何解决织梦DedeCMS后台模块管理列表不显示
在使用织梦Dedecms的过程中,我们会遇到模块管理列表无法显示的问题,造成织梦模块管理列表无法显示的原因,可能有很多种,现小编总结了遇到过的一种方法仅供参考. 方法步骤一: 由于/data/modu ...
- hive中的bucket table
前言 bucket table(桶表)是对数据进行哈希取值,然后放到不同文件中存储 应用场景 当数据量比较大,我们需要更快的完成任务,多个map和reduce进程是唯一的选择.但是如果输入文件是一个的 ...
- 07_Redis事务
[简述] 事务是指一系列的操作步骤,着一些列的操作步骤,要么完全地执行,要不完全地不执行. 比如微博中: A用户关注了B用户,那么A的关注列表里就会有B用户,B用户的粉丝列表里就会有A用户. 这个关注 ...
- Raft协议--中文论文介绍
本篇博客为著名的 RAFT 一致性算法论文的中文翻译,论文名为<In search of an Understandable Consensus Algorithm (Extended Vers ...