这本质上是一个\(dp\)

如果没有"两个上升子序列相同,那么只需要计算一次"这一个性质,那么就很好做了,我们用\(dp[i]\)表示以\(i\)结尾的上升子序列个数,那么就有\(dp[i]=\sum_{j=1}^{i-1}dp[j]\)

这个暴力转移是\(O(n^2)\)的,我们这里可以直接用树状数组来优化,于是就变成了\(O(nlogn)\)

同时由于数字可能非常大,所以需要离散化

之后再来考虑一下如何去重

首先重复的情况肯定是来自于一个之前已经出现过的数,而这个出现的数又将所有之前那个点算出来的答案又都加了一遍,这样就会有重复的了

那我们怎么去掉这些重复的情况呢

首先直接不考虑这个再次出现的数是肯定不对的,如果这个数和它之前出现的那个位置之间有一些比这个数小的的数,那么这些就就没有被计入答案,于是就错了

但是我们可以对每一个数维护一个\(lastans[i]\),表示\(i\)这个数上次被计入答案的时候\(\sum_{j=1}^{i-1}dp[j]\)是多少,之后我们还是用树状数组来查询前缀和,之后我们计入答案的应该就是这次查询出来的答案减去\(lastans\),也就是表示新增的上升子序列的个数是多少,之后我们再把这个数加入树状数组

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#define re register
#define lowbit(x) ((x)&(-(x)))
#define maxn 100005
#define LL long long
#define int long long
const LL mod=1e9+7;
std::map<LL,LL> ma;
LL c[maxn];
int n;
LL a[maxn],b[maxn];
LL lastans[maxn];
int f[maxn];
inline LL read()
{
char c=getchar();
LL x=0,r=1;
while(c<'0'||c>'9')
{
if(c=='-') r=-1;
c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x*r;
}
inline void add(int x,LL v)
{
for(re LL i=x;i<=n;i+=lowbit(i))
c[i]=(c[i]+v)%mod;
}
inline LL query(LL x)
{
LL ans=0;
for(re LL i=x;i;i-=lowbit(i))
ans=(ans+c[i])%mod;
return ans;
}
signed main()
{
n=read();
for(re int i=1;i<=n;i++) a[i]=b[i]=read();
std::sort(b+1,b+n+1);
int tot=std::unique(b+1,b+1+n)-b-1;
for(re int i=1;i<=tot;i++)
ma[b[i]]=i;
LL cnt=0;
for(re int i=1;i<=n;i++)
{
int j=ma[a[i]];
if(!f[j])
{
LL mid=query(j-1);
cnt=(cnt+mid)%mod;
add(j,mid+1);
lastans[j]=mid;
f[j]=1;
continue;
}
LL mid=query(j-1);
cnt=(cnt+mid-lastans[j]+mod)%mod;
add(j,(mid-lastans[j]+2*mod)%mod);
lastans[j]=mid;
}
std::cout<<cnt;
return 0;
}

【[TJOI2014]上升子序列】的更多相关文章

  1. bzoj5157: [Tjoi2014]上升子序列(树状数组LIS)

    5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不 ...

  2. 【bzoj5157】[Tjoi2014]上升子序列 树状数组

    题目描述 求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果. 题解 树状数组 傻逼题,离散化后直接使用树状数组统计即可.由于要求本质不同,因此一个数要减去它前一次出现时的贡献( ...

  3. BZOJ5157 & 洛谷3970:[TJOI2014]上升子序列——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5157 https://www.luogu.org/problemnew/show/P3970 给定 ...

  4. [TJOI2014] 上升子序列

    刚刚做的时候一看:这不是个傻逼题吗hhhhh....然后发现写完了过不了样例,仔细一看题:同构的算一种. 这可咋办啊? 其实很简单,设f[i] 为 以a[i] 结尾的上升子序列个数,我们考虑当前如果算 ...

  5. P3970 [TJOI2014]上升子序列

    传送门 DP 十分显然的DP,但是不好写 设 f[ i ] 表示以第 i 个数作结尾时的方案数,原序列为 a 如果不考虑相同的序列: 那么转移就是 Σ f[ j ] (0< j < i & ...

  6. BZOJ5157 [Tjoi2014]上升子序列 【树状数组】

    题目链接 BZOJ5157 题解 我们只需计算每个位置为开头产生的贡献大小,就相当于之后每个大于当前位置的位置产生的贡献 + 1之和 离散化后用树状数组维护即可 要注意去重,后面计算的包含之前的,记录 ...

  7. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  8. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  9. [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

随机推荐

  1. Centos时间查看修改命令date详解

    1.查看.修改Linux时区与时间 一.linux时区的查看与修改 1,查看当前时区date -R 2,修改设置时区方法1:tzselect 方法2:仅限于RedHat Linux 和 CentOSt ...

  2. 项目开发-->基础功能汇总

    祭奠曾经逝去的青春…… 1.基础功能汇总-->身份认证及用户登录模块 2.基础功能汇总-->一键登录功能汇总 3.堆和栈 4.变量

  3. 用 Redis Desktop Manager 远程连接 redis 数据库。

    环境: 本机OS:window 10(本机没有安装redis) redis 服务器:centos 7 使用 Redis Desktop Manager 工具远程连接 redis. Redis Desk ...

  4. 在CentOS 7下更改yum源与更新系统

    在CentOS 7下更改yum源与更新系统. [1] 首先备份/etc/yum.repos.d/CentOS-Base.repo cp /etc/yum.repos.d/CentOS-Base.rep ...

  5. int btn = (Button) findViewById(View.getId());

    int btn = (Button) findViewById(View.getId());//这句话中的btn不能用来和按钮键Button的id号去比较 如果想存储Button,可以这样做: Sta ...

  6. Springboot事务使用与回滚

    Springboot中事务的使用: 1.启动类加上@EnableTransactionManagement注解,开启事务支持(其实默认是开启的). 2.在使用事务的public(只有public支持事 ...

  7. rocketmq 两个线程同时消费一个消息

    1.问题描述 线上项目A部署两台机器,每台机器两个实例,订阅同一个topic,消费心跳数据. (两台机器host1,host2) 运维同事 部署时 有一个实例用root账户重启的, 然后该实例出现两个 ...

  8. 理解JS表达式

    表达式:是由运算元和运算符(可选)构成,并产生运算结果的语法结构. 基本表达式 以下在ES5中被称为基本表达式(Primary Expression) this.null.arguments等内置的关 ...

  9. 数组sort()方法排序

    sort()方法排序 var arr = ["G","A","C","B","I","H& ...

  10. 第三方库 jsoncpp 读写json

    一.摘要 JSON 的全称为:JavaScript Object Notation,顾名思义,JSON 是用于标记 Javascript 对象的,JSON 官方的解释为:JSON 是一种轻量级的数据传 ...