bzoj

luogu

题意

给你一个\(n*m\)的网格,每个位置上有一个箭头指向上或下或左或右。有些位置上还没有箭头,现在要求你在这些没有箭头的位置上填入箭头,使得从网格的任意一个位置开始,都可以沿着箭头走出网格。

求填入的方案数膜\(10^9+7\)

sol

给“网格外”建一个点。每个格子向它指向的格子连一条边。

这样会发现一个方案合法当且仅当连出的这\(n*m\)条边构成一棵树。

没有确定的格子可以向四个方向连边。这样直接上矩阵树可以做到\(O((nm)^3)\)。

考虑优化。只对所有未确定的格子以及“网格外”建点,这样就只有\(k+1\)个点。每个未确定的格子向四个方向能走到的第一个未确定格子或是“网格外”连边。

具体实现可以用记搜,同时记录一下每个状态是否在搜索栈中,可以判无解。

复杂度是\(O(nm+k^3)\)

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 305;
const int mod = 1e9+7;
int T,n,m,tot,id[N][N],f[N][N],vis[N][N],fg,a[N][N],ans;char s[N][N];
void init()
{
tot=fg=ans=1;
memset(id,0,sizeof(id));
memset(f,-1,sizeof(f));
memset(vis,0,sizeof(vis));
memset(a,0,sizeof(a));
}
int dfs(int i,int j)
{
if (~f[i][j]) return f[i][j];
if (i<1||i>n||j<1||j>m) return 1;
if (id[i][j]) return f[i][j]=id[i][j];
if (vis[i][j]) return f[i][j]=fg=0;vis[i][j]=1;
if (s[i][j]=='L') f[i][j]=dfs(i,j-1);
if (s[i][j]=='R') f[i][j]=dfs(i,j+1);
if (s[i][j]=='U') f[i][j]=dfs(i-1,j);
if (s[i][j]=='D') f[i][j]=dfs(i+1,j);
vis[i][j]=0;return f[i][j];
}
void link(int u,int v){a[u][v]--;a[v][v]++;}
int main()
{
freopen("dancestep.in","r",stdin);
freopen("dancestep.out","w",stdout);
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&m);init();
for (int i=1;i<=n;++i)
{
scanf("%s",s[i]+1);
for (int j=1;j<=m;++j)
if (s[i][j]=='.') id[i][j]=++tot;
}
for (int i=1;i<=n;++i)
for (int j=1;j<=m;++j)
dfs(i,j);
for (int i=1;i<=n;++i)
for (int j=1;j<=m;++j)
if (id[i][j])
{
link(dfs(i,j-1),id[i][j]);link(dfs(i,j+1),id[i][j]);
link(dfs(i-1,j),id[i][j]);link(dfs(i+1,j),id[i][j]);
}
if (!fg) {puts("0");continue;}
for (int i=1;i<=tot;++i)
for (int j=1;j<=tot;++j)
a[i][j]=(a[i][j]+mod)%mod;
for (int i=2;i<=tot;++i)
{
for (int j=i+1;j<=tot;++j)
while (a[j][i])
{
int t=a[i][i]/a[j][i];
for (int k=i;k<=tot;++k) a[i][k]=(a[i][k]-1ll*t*a[j][k]%mod+mod)%mod,swap(a[i][k],a[j][k]);
ans=(mod-ans)%mod;
}
ans=1ll*ans*a[i][i]%mod;
}
printf("%d\n",ans);
}
}

[BZOJ5133][CodePlus2017年12月]白金元首与独舞的更多相关文章

  1. 【BZOJ5133】[CodePlus2017年12月]白金元首与独舞 矩阵树定理

    [BZOJ5133][CodePlus2017年12月]白金元首与独舞 题面:www.lydsy.com/JudgeOnline/upload/201712/div1.pdf 题解:由于k很小,考虑用 ...

  2. 【bzoj5133】[CodePlus2017年12月]白金元首与独舞 并查集+矩阵树定理

    题目描述 给定一个 $n\times m$ 的方格图,每个格子有 ↑.↓.←.→,表示从该格子能够走到相邻的哪个格子.有一些格子是空着的,需要填上四者之一,需要满足:最终的方格图中,从任意一个位置出发 ...

  3. [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞

    [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...

  4. BZOJ5131: [CodePlus2017年12月]可做题2

    BZOJ没有题面,差评 洛谷的题目链接 题解 其实这题很久之前就写了,也想写个题解但是太懒了,咕到了今天 在typora写完题解不想copy过来再改格式了,于是直接贴截图qwq #include &l ...

  5. 【LibreOJ】#6259. 「CodePlus 2017 12 月赛」白金元首与独舞

    [题目]给定n行m列的矩阵,每个位置有一个指示方向(上下左右)或没有指示方向(任意选择),要求给未定格(没有指示方向的位置)确定方向,使得从任意一个开始走都可以都出矩阵,求方案数.n,m<=20 ...

  6. 「CodePlus 2017 12 月赛」白金元首与独舞

    description 题面 data range \[ 1 \leq T \leq 10, 1 \leq n, m \leq 200 , 0 \leq k \leq \min(nm, 300)\] ...

  7. 走进矩阵树定理--「CodePlus 2017 12 月赛」白金元首与独舞

    n,m<=200,n*m的方阵,有ULRD表示在这个格子时下一步要走到哪里,有一些待决策的格子用.表示,可以填ULRD任意一个,问有多少种填法使得从每个格子出发都能走出这个方阵,答案取模.保证未 ...

  8. loj6259「CodePlus 2017 12 月赛」白金元首与独舞

    分析 我们将没连的点连向周围四个点 其余的按照给定的方向连 我们将所有连出去的位置统一连到0点上 再以0作为树根 于是就将问题转化为了有向图内向树计数 代码 #include<iostream& ...

  9. Solution -「Code+#2」「洛谷 P4033」白金元首与独舞

    \(\mathcal{Description}\)   link.   给定一个 \(n\times m\) 的网格图,一些格子指定了走出该格的方向(上下左右),而有 \(k\) 格可以任意指定走出方 ...

随机推荐

  1. 【c++ primer, 5e】访问控制与封装

    练习 7.16 无,类的接口定义在public说明符之后,类的实现细节定义在private说明符之后. 7.17 有.类成员的默认访问权限不同.class的类成员默认为private,struct的则 ...

  2. CSS 3 中的多列属性

    .column-count <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  3. 3d旋转动画焦点图

    在线演示 本地下载

  4. EFM32JG系列MCU内部温度传感器使用方法

    在很多电子类应用场合中,我们经常需要采集产品工作的周围环境温度,一般采取的方式有两种: 1)外加温度传感器 2)采用MCU内部温度传感器 外加温度传感器会增加产品的成本以及布板空间,所以在很多场合,我 ...

  5. COS-3OS的用户接口

    操作系统是用户和计算机的接口,同时也是计算机硬件和其他软件的接口.操作系统的功能包括管理计算机系统的硬件.软件及数据资源,控制程序运行,改善人机界面,为其它应用软件提供支持,让计算机系统所有资源最大限 ...

  6. redhat6.8链路聚合

    centos 6.X   聚合链路 0.查看NetworkManager服务,停止NetworkManager服务.不做这一步很可能出问题          service NetworkManage ...

  7. 第一篇:Spark SQL源码分析之核心流程

    /** Spark SQL源码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人 ...

  8. code for 1 - 分治

    2017-08-02 17:23:14 writer:pprp 题意:将n分解为n/2, n%2, n/2三部分,再将n/2分解..得到一个序列只有0和1,给出[l, r]问l到r有几个1 题解:分治 ...

  9. Java对象初始化

    自动初始化(默认值) 一个类的所有基本数据成员都会得到初始化,运行下面的例子可以查看这些默认值: class Default{ boolean t; char c; byte b; short s; ...

  10. 使用VirtualBox安装Android 4.2.2 x86 .

    http://blog.csdn.net/kunoy/article/details/8768205 virtual box 安装 android x86 不显示鼠标, --> 控制 --> ...