JZYZOJ1524 [haoi2012]外星人 欧拉函数
http://172.20.6.3/Problem_Show.asp?id=1524
大概可以算一个结论吧,欧拉函数在迭代的时候,每次迭代之后消去一个2,每个非2的质因子迭代一次又(相当于)生成一个2(质因子-1变成2的倍数),所以统计总共能生成的2的个数即可。
生成的2的个数可以线性筛求出,x为质数时x中2的个数=x-1中2的个数,x不为质数时其中2的个数为其分为任意两因子后这两因子中2的个数相加(因为同一个质数拆解出2的个数不因其指数改变,所有质因数无论指数为多少其每个出现都需要拆解,质数的指数以及不同质数的个数只影响拆解速度不影响2的消去速度)。
因此f[x]=f[x-1](x为质数),f[x*y]=f[x]+f[y]。
需要注意的是,如果原数的质因子中没有2要给答案+1,因为生成的2如果在起初有2的情况下是直接删掉的,没有的2的情况下第一次计算只生成了2没有消去2,比如3->2->1迭代出1个2要两步,2*3->2->1迭代出2个2也只要2步。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=;
int n;
long long f[maxn]={},su[maxn]={},cnt=;
bool vis[maxn]={};
int main(){
int T;scanf("%d",&T);
f[]=;
for(int i=;i<=maxn-;i++){
if(!vis[i])su[++cnt]=i,f[i]=f[i-];
for(int j=;j<=cnt;j++){
long long z=su[j]*i;
if(z>maxn-)break;
vis[z]=;f[z]=f[su[j]]+f[i];
if(i%su[j]==)break;
}
}
while(T-->){
scanf("%d",&n);long long ans=,x,y,ff=;
for(int i=;i<=n;i++){
scanf("%I64d%I64d",&x,&y);
ans+=f[x]*y;
if(x==) ff=;
}
printf("%I64d\n",ans+ff);
}
return ;
}
JZYZOJ1524 [haoi2012]外星人 欧拉函数的更多相关文章
- Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛
2749: [HAOI2012]外星人 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 568 Solved: 302[Submit][Status][ ...
- 【BZOJ2749】【HAOI2012】外星人[欧拉函数]
外星人 Time Limit: 3 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Input Output 输出te ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- COGS2531. [HZOI 2016]函数的美 打表+欧拉函数
题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...
- poj2478 Farey Sequence (欧拉函数)
Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...
- 51Nod-1136 欧拉函数
51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制: ...
- 欧拉函数 - HDU1286
欧拉函数的作用: 有[1,2.....n]这样一个集合,f(n)=这个集合中与n互质的元素的个数.欧拉函数描述了一些列与这个f(n)有关的一些性质,如下: 1.令p为一个素数,n = p ^ k,则 ...
随机推荐
- 【洛谷 P4008】 [NOI2003]文本编辑器 (Splay)
题目链接 \(Splay\)先练到这吧(好像还有道毒瘤的维护数列诶,算了吧) 记录下光标的编号,维护就是\(Splay\)基操了. 另外数据有坑,数据是\(Windows\)下生成了,回车是'\n\r ...
- HDU 1205 吃糖果 (数学)
题目链接 Problem Description HOHO,终于从Speakless手上赢走了所有的糖果,是Gardon吃糖果时有个特殊的癖好,就是不喜欢将一样的糖果放在一起吃,喜欢先吃一种,下一次吃 ...
- idea编写的java代码,在cmd运行乱码解决方案
1.解决方案 使用txt打开,另存为的时候选择编码为ANSI 即可.
- div圆角
div{ -moz-border-radius: 10px; -webkit-border-radius: 10px; border-radius: 10px;}
- bzoj 1084 DP
首先对于m==1的情况非常容易处理(其实这儿因为边界我错了好久...),直接DP就好了,设f[i][k]为这个矩阵前i个选k个矩阵的最大和,那么f[i][k]=max(f[j][k-1]+sum[j+ ...
- 在AndroidStudio中导入开源库 或者jar
方法一: 先点击Androidstudio中的Project Structure,如图 图1 到如下界面 图2 然后点击+号 图3 选择Library dependency 图4 输入你要的jar包, ...
- SD卡 模拟SPI总线控制流程
SD卡为移动设备提供了安全的,大容量存储解决方法.它本身可以通过两种总线模式和MCU进行数据传输,一种是称为SD BUS的4位串行数据模式,另一种就是大家熟知的4线SPI Bus模式.一些廉价,低端的 ...
- 【常见的SQL Server连接失败错误以及解决方法】
[常见的SQL Server连接失败错误以及解决方法] http://blog.csdn.net/feixianxxx/article/details/5523922 ADO连接SQL Server ...
- [New learn]AutoLayout调查基于code
代码https://github.com/xufeng79x/TestAutolayout-code2 0.插在前面 必须关闭view的自动缩放掩码,自动缩放掩码是autolayout出现之前系统管理 ...
- System.getProperty方法中输出路径的方法
package codegenerator;/** *@author Eilen *@date 2017年9月27日---下午3:15:09 *@描述: *@answer */public class ...