题面

Bzoj

Luogu

题解

先来颓柿子

$$ \sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj! \\ =\sum_{j=0}^n2^jj!\sum_{i=0}^nS(i,j) \\ \because S(n, m)=\frac1{m!}\sum_{i=0}^m(-1)^i\binom{m}{i}(m-i)^n=\sum_{i=0}^m\frac{(-1)^i}{i!}\frac{(m-i)^n}{(m-i)!} \\ \therefore=\sum_{j=0}^n2^jj!\sum_{i=0}^n\sum_{k=0}^{j}\frac{(-1)^k}{k!}\frac{(j-k)^i}{(j-k)!} \\ =\sum_{j=0}^n2^jj!\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{\sum_{i=0}^n(j-k)^i}{(j-k)!} \\ =\sum_{j=0}^n2^jj!\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{(j-k)^{n+1}-1}{(j-k-1)(j-k)!} $$

然后后面那一大坨可以看做卷积,因为要取模,$NTT$就好了。

#include <cstdio>
#include <algorithm>
using std::swap; const int N = 2.7e5 + 10, Mod = 998244353, g = 3;
int n, m, P, jc[N], pow2[N], invjc[N];
int a[N], b[N], r[N], ret; int qpow(int a, int b) {
int ret = 1;
while(b) {
if(b & 1) ret = 1ll * ret * a % Mod;
a = 1ll * a * a % Mod, b >>= 1;
} return ret;
} void NTT (int f[], int opt) {
for(int i = 0; i < n; ++i) if(i < r[i]) swap(f[i], f[r[i]]);
for(int len = 1, nl = 2; len < n; len = nl, nl <<= 1) {
int rot = qpow(g, (Mod - 1) / nl);
if(opt == -1) rot = qpow(rot, Mod - 2);
for(int l = 0; l < n; l += nl) {
int w = 1, r = l + len;
for(int k = l; k < r; ++k, w = 1ll * w * rot % Mod) {
int x = f[k], y = 1ll * f[k + len] * w % Mod;
f[k] = (x + y) % Mod, f[k + len] = (x + Mod - y) % Mod;
}
}
}
} int main () {
scanf("%d", &n), jc[0] = pow2[0] = invjc[0] = b[0] = 1, b[1] = n + 1;
for(int i = 1; i <= n; ++i)
jc[i] = 1ll * jc[i - 1] * i % Mod, pow2[i] = (pow2[i - 1] << 1) % Mod;
invjc[n] = qpow(jc[n], Mod - 2);
for(int i = n - 1; i; --i) invjc[i] = 1ll * invjc[i + 1] * (i + 1) % Mod;
for(int i = 0; i <= n; ++i) a[i] = 1ll * invjc[i] * (i & 1 ? Mod - 1 : 1) % Mod;
for(int i = 2; i <= n; ++i)
b[i] = 1ll * (qpow(i, n + 1) + Mod - 1) % Mod * qpow(i - 1, Mod - 2) % Mod * invjc[i] % Mod;
for(m = n << 1, n = 1; n <= m; n <<= 1, ++P);
for(int i = 0; i < n; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
NTT(a, 1), NTT(b, 1);
for(int i = 0; i < n; ++i) a[i] = 1ll * a[i] * b[i] % Mod;
NTT(a, -1); int invn = qpow(n, Mod - 2);
for(int i = 0; i <= n; ++i)
ret = (ret + 1ll * pow2[i] * jc[i] % Mod * a[i] % Mod * invn % Mod) % Mod;
printf("%d\n", ret);
return 0;
}

【Bzoj4555】【Luogu P4091】求和(NTT)的更多相关文章

  1. [BZOJ4555 TJOI2016 HEOI2016 求和]

    ​ 第一篇博客,请大家多多关照.(鞠躬 BZOJ4555 TJOI2016 HEOI2016 求和 题意: ​ 给定一个正整数\(n\)(\(1\leqq n \leqq100000\)),求: \[ ...

  2. loj2058 「TJOI / HEOI2016」求和 NTT

    loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...

  3. BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)

    题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...

  4. 【bzoj4555】[Tjoi2016&Heoi2016]求和 NTT

    题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) ...

  5. 【题解】Luogu P4091 [HEOI2016/TJOI2016]求和

    原题传送门 \[\begin{aligned} a n s &=\sum_{i=0}^{n} \sum_{j=0}^{i}\left\{\begin{array}{c}{i} \\ {j}\e ...

  6. luogu P4091 [HEOI2016/TJOI2016]求和

    传送门 这一类题都要考虑推式子 首先,原式为\[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)*2^j*j!\] 可以看成\[f(n)=\sum_{j=0}^{n}2^ ...

  7. BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】

    题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...

  8. BZOJ4555 HEOI2016/TJOI2016求和(NTT+斯特林数)

    S(i,j)=Σ(-1)j-k(1/j!)·C(j,k)·ki=Σ(-1)j-k·ki/k!/(j-k)!.原式=ΣΣ(-1)j-k·ki·2j·j!/k!/(j-k)! (i,j=0~n).可以发现 ...

  9. BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)

    题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...

随机推荐

  1. 【C++对象模型】第三章 Data语义学

    1. Data Member 的布局 同一个Access Section(private, public等)中,data member的顺序按照声明顺序排列,但是没有规定需要连续排序.同时编译器可能会 ...

  2. Scala环境安装设置

    Scala语言可以安装在任何类UNIX或Windows系统.要安装Scala,必须先安装Java1.5或更高版本安装在计算机上. Windows上安装Scala: 步骤(1):JAVA设置: 首先,必 ...

  3. 元类编程--property动态属性

    from datetime import date, datetime class User: def __init__(self, name, birthday): self.name = name ...

  4. 【点分治练习题·不虚就是要AK】点分治

    不虚就是要AK(czyak.c/.cpp/.pas)  2s 128M  by zhb czy很火.因为又有人说他虚了.为了证明他不虚,他决定要在这次比赛AK. 现在他正在和别人玩一个游戏:在一棵树上 ...

  5. ZOJ3229 Shoot the Bullet [未AC]

    Time Limit: 2 Seconds      Memory Limit: 32768 KB      Special Judge Gensokyo is a world which exist ...

  6. 【设计模式】原型模式(Prototype)

    摘要: 1.本文将详细介绍原型模式的原理和实际代码中特别是Android系统代码中的应用. 纲要: 1. 引入原型模式 2. 原型模式的概念及优缺点介绍 3. 原型模式对拷贝的使用 4. 原型模式在A ...

  7. 异步网络模块之aiohttp的使用(一)

    异步网络模块之aiohttp的使用(一) 平时我们也许用的更多的是requests模块,或者是requests_hml模块,但是他们都属于阻塞类型的不支持异步,速度很难提高,于是后来出现了异步的gre ...

  8. Oracle 内存管理

    --内存分配建库时可以先分配系统内存的50%-80%给Oracle,后期根据业务再进行调整.SGA.PGA分配比例:OLTP:SGA %80 , PGA %20OLAP:SGA %50 , PGA % ...

  9. FineReport——JS二次开发(分页预览)

    BS访问某个cpt模板,报表servlet将会将cpt文件解析成对应的html,报表内容最终转换为一个table,位于id=content-container的div中. 在模板和html页面中,他们 ...

  10. 切面保存web访问记录

    package com.hn.xf.device.api.rest.aspect; import com.hn.xf.device.api.rest.authorization.manager.Tok ...