P1629 邮递员送信

题目描述

有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N。由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间。这个邮递员每次只能带一样东西。求送完这N-1样东西并且最终回到邮局最少需要多少时间。

输入输出格式

输入格式:

第一行包括两个整数N和M。

第2到第M+1行,每行三个数字U、V、W,表示从A到B有一条需要W时间的道路。 满足1<=U,V<=N,1<=W<=10000,输入保证任意两点都能互相到达。

【数据规模】

对于30%的数据,有1≤N≤200;

对于100%的数据,有1≤N≤1000,1≤M≤100000。

输出格式:

输出仅一行,包含一个整数,为最少需要的时间。

输入输出样例

输入样例#1:

5 10
2 3 5
1 5 5
3 5 6
1 2 8
1 3 8
5 3 4
4 1 8
4 5 3
3 5 6
5 4 2
输出样例#1:

83

思路:spfa挺水的一道题,最开始看到这个题的时候没有看清是单行道,就感觉跑一遍最短路然后再乘2就行了。结果她是单向边,然后就想我们这个题说白了就是求从1点到其他n-1个点的最短路,然后再加上从其他n-1个点到1点的最短路之和,然后就想到用Floyd,这样我们就可以轻易的的到其他n-1个点到1的最短路,行,你就用Floyd做吧,不T乘狗才怪呢、、好,那又想到,既然用Floyd会T,那就用spfa吧,我们跑n遍spfa不就吧他们都弄出来了吗?!是,恭喜,再次T成狗、、、我们想一个现实一点的做法,我们现在是要求两步,第一步是要求从1到其他n-1个点的最短路,直接spfa就行,第二问是要求从其他n-1个点到1点的最短路径,我们考虑建反向边,再用spfa跑一遍从1到n-1不就好了,怎么建反向边?!我们那个结构体存一下不就好了。。。为什么要建反向边就可以解决问题??因为这个地方我们考虑从n-1个点到1不跟从1到n-1个点一样吗,就是他的路是单向的,我们现在只可以走得便反向减回去不就好了、、、

代码:
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 100000
#define maxn 99999999
using namespace std;
long long ans;
int n,m,x,y,z,s,tot,dis[N],head[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct NN
{
    int x,y,z;
}edde[N];
struct Edge
{
    int to,dis,from,next;
}edge[N];
int add(int x,int y,int z)
{
    tot++;
    edge[tot].to=y;
    edge[tot].dis=z;
    edge[tot].next=head[x];
    head[x]=tot;
}
int spfa(int s)
{
    queue<;
    ;i<=n;i++) dis[i]=maxn,vis[i]=false;
    q.push(s);vis[s]=;
    while(!q.empty())
    {
        int x=q.front(); q.pop();
        for(int i=head[x];i;i=edge[i].next)
        {
            int t=edge[i].to;
            if(dis[t]>dis[x]+edge[i].dis)
            {
                dis[t]=dis[x]+edge[i].dis;
                if(!vis[t])
                {
                    q.push(t);
                    vis[t]=true;
                }
            }
        }
        vis[x]=false;
    }
    ;i<=n;i++)
     sum+=dis[i];
    return sum;
}
int main()
{
    n=read(),m=read();
    ;i<=m;i++)
    {
        x=read(),y=read(),z=read();
        add(x,y,z);
        edde[i].x=x;edde[i].y=y,edde[i].z=z;
    }
    ans+=spfa(); s=tot,tot=;
    memset(dis,,sizeof(dis));
    memset(head,,sizeof(head));
    memset(edge,,sizeof(edge));
    ;i<=s;i++)
      add(edde[i].y,edde[i].x,edde[i].z);
    ans+=spfa();
    printf("%lld",ans);
    ;
}

洛谷——P1629 邮递员送信的更多相关文章

  1. 洛谷 P1629 邮递员送信-反向建边

    洛谷 P1629 邮递员送信 题目描述: 有一个邮递员要送东西,邮局在节点 11.他总共要送 n-1n−1 样东西,其目的地分别是节点 22 到节点 nn.由于这个城市的交通比较繁忙,因此所有的道路都 ...

  2. 洛谷 P1629 邮递员送信 题解

    P1629 邮递员送信 题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要 ...

  3. 洛谷P1629 邮递员送信

    题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间.这个邮递员每 ...

  4. 洛谷 P1629 邮递员送信

    题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间.这个邮递员每 ...

  5. 洛谷—— P1629 邮递员送信

    https://www.luogu.org/problem/show?pid=1629 题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比 ...

  6. yzoj P1412 & 洛谷P1629 邮递员送信 题解

    有一个邮递员要送东西,邮局在结点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间.这个邮递员每次只能带一 ...

  7. 洛谷P1629 邮递员送信 最短路-Djistra

    先上一波题目qwq https://www.luogu.org/problem/P1629· 复习了一波 dijstra 的 priority_queue(优先队列)优化的写法 tips: 求单项路中 ...

  8. Luogu P1629 邮递员送信

    P1629 邮递员送信 题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要 ...

  9. P1629 邮递员送信

    题目描述: 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间.这个邮递员 ...

随机推荐

  1. LightOJ 1097 - Lucky Number 线段树

    http://www.lightoj.com/volume_showproblem.php?problem=1097 题意:一个自然数序列,先去掉所有偶数项,在此基础上的序列的第二项为3,则删去所有3 ...

  2. YII 框架查询

    基础查询 Customer::find()->one();    此方法返回一条数据: Customer::find()->all();    此方法返回所有数据: Customer::f ...

  3. Hadoop和大数据:60款顶级开源工具(山东数漫江湖)

    说到处理大数据的工具,普通的开源解决方案(尤其是Apache Hadoop)堪称中流砥柱.弗雷斯特调研公司的分析师Mike Gualtieri最近预测,在接下来几年,“100%的大公司”会采用Hado ...

  4. 深入理解Spring MVC(山东数漫江湖)

    初始工程 使用Spring Boot和web,thymeleaf的starter来设置初始工程.xml配置如下: <parent>   <groupId>org.springf ...

  5. crontab 详解 -- (转)

    cron 是一个可以用来根据时间.日期.月份.星期的组合来调度对重复任务的执行的守护进程. cron 假定系统持续运行.如果当某任务被调度时系统不在运行,该任务就不会被执行. 要使用 cron 服务, ...

  6. G题 hdu 1466 计算直线的交点数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1466 计算直线的交点数 Time Limit: 2000/1000 MS (Java/Others)  ...

  7. 重拾Object--(一)初识

    Java中的Object类有着特殊的意义,他是所有其它类的父类,查看Object类的源代码,可以发现代码不多,逻辑也很简单. Java所有类的源代码我们都可以在JDK的文件中查看,在JDK下会有一个名 ...

  8. bzoj 1854 游戏 二分图匹配 || 并查集

    题目链接 Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的 ...

  9. win10远程桌面配置

    Win10连接远程桌面的时候提示您的凭证不工作该怎么办? http://www.cnblogs.com/zhuimengle/p/6048128.html 二.服务器端 1.依旧进入组策略,不过是在服 ...

  10. MySQL 8.0 正式版 8.0.11 发布:比 MySQL 5.7 快 2 倍

    ySQL 8.0 正式版 8.0.11 已发布,官方表示 MySQL 8 要比 MySQL 5.7 快 2 倍,还带来了大量的改进和更快的性能! 注意:从 MySQL 5.7 升级到 MySQL 8. ...