Java中常用的6种排序算法详细分解
排序算法很多地方都会用到,近期又重新看了一遍算法,并自己简单地实现了一遍,特此记录下来,为以后复习留点材料。
废话不多说,下面逐一看看经典的排序算法:
1. 选择排序
选择排序的基本思想是遍历数组的过程中,以 i 代表当前需要排序的序号,则需要在剩余的 [i…n-1] 中找出其中的最小值,然后将找到的最小值与 i 指向的值进行交换。因为每一趟确定元素的过程中都会有一个选择最大值的子流程,所以人们形象地称之为选择排序。举个实例来看看:
初始: [38, 17, 16, 16, 7, 31, 39, 32, 2, 11]
i = 0: [2 , 17, 16, 16, 7, 31, 39, 32, 38 , 11] (0th [38]<->8th [2])
i = 1: [2, 7 , 16, 16, 17 , 31, 39, 32, 38, 11] (1st [38]<->4th [17])
i = 2: [2, 7, 11 , 16, 17, 31, 39, 32, 38, 16 ] (2nd [11]<->9th [16])
i = 3: [2, 7, 11, 16, 17, 31, 39, 32, 38, 16] ( 无需交换 )
i = 4: [2, 7, 11, 16, 16 , 31, 39, 32, 38, 17 ] (4th [17]<->9th [16])
i = 5: [2, 7, 11, 16, 16, 17 , 39, 32, 38, 31 ] (5th [31]<->9th [17])
i = 6: [2, 7, 11, 16, 16, 17, 31 , 32, 38, 39 ] (6th [39]<->9th [31])
i = 7: [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 无需交换 )
i = 8: [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 无需交换 )
i = 9: [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 无需交换 )
由例子可以看出,选择排序随着排序的进行( i 逐渐增大),比较的次数会越来越少,但是不论数组初始是否有序,选择排序都会从 i 至数组末尾进行一次选择比较,所以给定长度的数组,选择排序的比较次数是固定的: 1 + 2 + 3 + …. + n = n * (n + 1) / 2 ,而交换的次数则跟初始数组的顺序有关,如果初始数组顺序为随机,则在最坏情况下,数组元素将会交换 n 次,最好的情况下则可能 0 次(数组本身即为有序)。
由此可以推出,选择排序的时间复杂度和空间复杂度分别为 O(n2 ) 和 O(1) (选择排序只需要一个额外空间用于数组元素交换)。
实现代码:
* Selection Sorting
*/
SELECTION(new Sortable() {
public <T extends Comparable<T>> void sort(T[] array, boolean ascend) {
int len = array.length;
for (int i = 0; i < len; i++) {
int selected = i;
for (int j = i + 1; j < len; j++) {
int compare = array[j].compareTo(array[selected]);
if (compare != 0 && compare < 0 == ascend) {
selected = j;
}
}
exchange(array, i, selected);
}
}
})
2. 插入排序
插入排序的基本思想是在遍历数组的过程中,假设在序号 i 之前的元素即 [0..i-1] 都已经排好序,本趟需要找到 i 对应的元素 x 的正确位置 k ,并且在寻找这个位置 k 的过程中逐个将比较过的元素往后移一位,为元素 x “腾位置”,最后将 k 对应的元素值赋为 x ,插入排序也是根据排序的特性来命名的。
以下是一个实例,红色 标记的数字为插入的数字,被划掉的数字是未参与此次排序的元素,红色 标记的数字与被划掉数字之间的元素为逐个向后移动的元素,比如第二趟参与排序的元素为 [11, 31, 12] ,需要插入的元素为 12 ,但是 12 当前并没有处于正确的位置,于是我们需要依次与前面的元素 31 、 11 做比较,一边比较一边移动比较过的元素,直到找到第一个比 12 小的元素 11 时停止比较,此时 31 对应的索引 1 则是 12 需要插入的位置。
初始: [11, 31, 12, 5, 34, 30, 26, 38, 36, 18]
第一趟: [11, 31 , 12, 5, 34, 30, 26, 38, 36, 18] (无移动的元素)
第二趟: [11, 12 , 31, 5, 34, 30, 26, 38, 36, 18] ( 31 向后移动)
第三趟: [5 , 11, 12, 31, 34, 30, 26, 38, 36, 18] ( 11, 12, 31 皆向后移动)
第四趟: [5, 11, 12, 31, 34 , 30, 26, 38, 36, 18] (无移动的元素)
第五趟: [5, 11, 12, 30 , 31, 34, 26, 38, 36, 18] ( 31, 34 向后移动)
第六趟: [5, 11, 12, 26 , 30, 31, 34, 38, 36, 18] ( 30, 31, 34 向后移动)
第七趟: [5, 11, 12, 26, 30, 31, 34, 38 , 36, 18] (无移动的元素)
第八趟: [5, 11, 12, 26, 30, 31, 34, 36 , 38, 18] ( 38 向后移动)
第九趟: [5, 11, 12, 18 , 26, 30, 31, 34, 36, 38] ( 26, 30, 31, 34, 36, 38 向后移动)
插入排序会优于选择排序,理由是它在排序过程中能够利用前部分数组元素已经排好序的一个优势,有效地减少一些比较的次数,当然这种优势得看数组的初始顺序如何,最坏的情况下(给定的数组恰好为倒序)插入排序需要比较和移动的次数将会等于 1 + 2 + 3… + n = n * (n + 1) / 2 ,这种极端情况下,插入排序的效率甚至比选择排序更差。因此插入排序是一个不稳定的排序方法,插入效率与数组初始顺序息息相关。一般情况下,插入排序的时间复杂度和空间复杂度分别为 O(n2 ) 和 O(1) 。
实现代码:
* Insertion Sorting
*/
INSERTION(new Sortable() {
public <T extends Comparable<T>> void sort(T[] array, boolean ascend) {
int len = array.length;
for (int i = 1; i < len; i++) {
T toInsert = array[i];
int j = i;
for (; j > 0; j–) {
int compare = array[j - 1].compareTo(toInsert);
if (compare == 0 || compare < 0 == ascend) {
break;
}
array[j] = array[j - 1];
}
array[j] = toInsert;
}
}
})
3. 冒泡排序
冒泡排序可以算是最经典的排序算法了,记得小弟上学时最先接触的也就是这个算法了,因为实现方法最简单,两层 for 循环,里层循环中判断相邻两个元素是否逆序,是的话将两个元素交换,外层循环一次,就能将数组中剩下的元素中最小的元素“浮”到最前面,所以称之为冒泡排序。
照例举个简单的实例吧:
初始状态: [24, 19, 26, 39, 36, 7, 31, 29, 38, 23]
内层第一趟: [24, 19, 26, 39, 36, 7, 31, 29, 23 , 38 ] ( 9th [23]<->8th [38 )
内层第二趟: [24, 19, 26, 39, 36, 7, 31, 23 , 29 , 38] ( 8th [23]<->7th [29] )
内层第三趟: [24, 19, 26, 39, 36, 7, 23 , 31 , 29, 38] ( 7th [23]<->6th [31] )
内层第四趟: [24, 19, 26, 39, 36, 7, 23, 31, 29, 38] ( 7 、 23 都位于正确的顺序,无需交换)
内层第五趟: [24, 19, 26, 39, 7 , 36 , 23, 31, 29, 38] ( 5th [7]<->4th [36] )
内层第六趟: [24, 19, 26, 7 , 39 , 36, 23, 31, 29, 38] ( 4th [7]<->3rd [39] )
内层第七趟: [24, 19, 7 , 26 , 39, 36, 23, 31, 29, 38] ( 3rd [7]<->2nd [26] )
内层第八趟: [24, 7 , 19 , 26, 39, 36, 23, 31, 29, 38] ( 2nd [7]<->1st [19] )
内层第九趟: [7 , 24 , 19, 26, 39, 36, 23, 31, 29, 38] ( 1st [7]<->0th [24] )
……… .
其实冒泡排序跟选择排序比较相像,比较次数一样,都为 n * (n + 1) / 2 ,但是冒泡排序在挑选最小值的过程中会进行额外的交换(冒泡排序在排序中只要发现相邻元素的顺序不对就会进行交换,与之对应的是选择排序,只会在内层循环比较结束之后根据情况决定是否进行交换),所以在我看来,选择排序属于冒泡排序的改进版。
实现代码:
* Bubble Sorting, it's very similar with Insertion Sorting
*/
BUBBLE(new Sortable() {
public <T extends Comparable<T>> void sort(T[] array, boolean ascend) {
int length = array.length;
int lastExchangedIdx = 0;
for (int i = 0; i < length; i++) {
// mark the flag to identity whether exchange happened to false
boolean isExchanged = false;
// last compare and exchange happened before reaching index i
int currOrderedIdx = lastExchangedIdx > i ? lastExchangedIdx : i;
for (int j = length – 1; j > currOrderedIdx; j–) {
int compare = array[j - 1].compareTo(array[j]);
if (compare != 0 && compare > 0 == ascend) {
exchange(array, j – 1, j);
isExchanged = true;
lastExchangedIdx = j;
}
}
// if no exchange happen means array is already in order
if (isExchanged == false) {
break;
}
}
}
})
4. 希尔排序
希尔排序的诞生是由于插入排序在处理大规模数组的时候会遇到需要移动太多元素的问题。希尔排序的思想是将一个大的数组“分而治之”,划分为若干个小的数组,以 gap 来划分,比如数组 [1, 2, 3, 4, 5, 6, 7, 8] ,如果以 gap = 2 来划分,可以分为 [1, 3, 5, 7] 和 [2, 4, 6, 8] 两个数组(对应的,如 gap = 3 ,则划分的数组为: [1, 4, 7] 、 [2, 5, 8] 、 [3, 6] )然后分别对划分出来的数组进行插入排序,待各个子数组排序完毕之后再减小 gap 值重复进行之前的步骤,直至 gap = 1 ,即对整个数组进行插入排序,此时的数组已经基本上快排好序了,所以需要移动的元素会很小很小,解决了插入排序在处理大规模数组时较多移动次数的问题。
具体实例请参照插入排序。
希尔排序是插入排序的改进版,在数据量大的时候对效率的提升帮助很大,数据量小的时候建议直接使用插入排序就好了。
实现代码:
* Shell Sorting
*/
SHELL(new Sortable() {
public <T extends Comparable<T>> void sort(T[] array, boolean ascend) {
int length = array.length;
int gap = 1;
// use the most next to length / 3 as the first gap
while (gap < length / 3) {
gap = gap * 3 + 1;
}
while (gap >= 1) {
for (int i = gap; i < length; i++) {
T next = array[i];
int j = i;
while (j >= gap) {
int compare = array[j - gap].compareTo(next);
// already find its position
if (compare == 0 || compare < 0 == ascend) {
break;
}
array[j] = array[j - gap];
j -= gap;
}
if (j != i) {
array[j] = next;
}
}
gap /= 3;
}
}
})
5. 归并排序
归并排序采用的是递归来实现,属于“分而治之”,将目标数组从中间一分为二,之后分别对这两个数组进行排序,排序完毕之后再将排好序的两个数组“归并”到一起,归并排序最重要的也就是这个“归并”的过程,归并的过程中需要额外的跟需要归并的两个数组长度一致的空间,比如需要规定的数组分别为: [3, 6, 8, 11] 和 [1, 3, 12, 15] (虽然逻辑上被划为为两个数组,但实际上这些元素还是位于原来数组中的,只是通过一些 index 将其划分成两个数组,原数组为 [3, 6, 8, 11, 1, 3, 12, 15 ,我们设置三个指针 lo, mid, high 分别为 0,3,7 就可以实现逻辑上的子数组划分)那么需要的额外数组的长度为 4 + 4 = 8 。归并的过程可以简要地概括为如下:
1) 将两个子数组中的元素复制到新数组 copiedArray 中,以前面提到的例子为例,则 copiedArray = [3, 6, 8, 11, 1, 3, 12, 15] ;
2) 设置两个指针分别指向原子数组中对应的第一个元素,假定这两个指针取名为 leftIdx 和 rightIdx ,则 leftIdx = 0 (对应 copiedArray 中的第一个元素 [3] ), rightIdx = 4 (对应 copiedArray 中的第五个元素 [1] );
3) 比较 leftIdx 和 rightIdx 指向的数组元素值,选取其中较小的一个并将其值赋给原数组中对应的位置 i ,赋值完毕后分别对参与赋值的这两个索引做自增 1 操作,如果 leftIdx 或 rigthIdx 值已经达到对应数组的末尾,则余下只需要将剩下数组的元素按顺序 copy 到余下的位置即可。
下面给个归并的具体实例:
第一趟:
辅助数组 [21 , 28, 39 | 35, 38] (数组被拆分为左右两个子数组,以 | 分隔开)
[21 , , , , ] (第一次 21 与 35 比较 , 左边子数组胜出, leftIdx = 0 , i = 0 )
第二趟:
辅助数组 [21, 28 , 39 | 35, 38]
[21 , 28, , , ] (第二次 28 与 35 比较,左边子数组胜出, leftIdx = 1 , i = 1 )
第三趟: [21, 28, 39 | 35 , 38]
[21 , 28 , 35, , ] (第三次 39 与 35 比较,右边子数组胜出, rightIdx = 0 , i = 2 )
第四趟: [21, 28, 39 | 35, 38 ]
[21 , 28 , 35 , 38, ] (第四次 39 与 38 比较,右边子数组胜出, rightIdx = 1 , i = 3 )
第五趟: [21, 28, 39 | 35, 38]
[21 , 28 , 35 , 38 , 39] (第五次时右边子数组已复制完,无需比较 leftIdx = 2 , i = 4 )
以上便是一次归并的过程,我们可以将整个需要排序的数组做有限次拆分(每次一分为二)直到分为长度为 1 的小数组为止,长度为 1 时数组已经不用排序了。在这之后再逆序(由于采用递归)依次对这些数组进行归并操作,直到最后一次归并长度为 n / 2 的子数组,归并完成之后数组排序也完成。
归并排序需要的额外空间是所有排序中最多的,每次归并需要与参与归并的两个数组长度之和相同个元素(为了提供辅助数组)。则可以推断归并排序的空间复杂度为 1 + 2 + 4 + … + n = n * ( n + 2) / 4 (忽略了 n 的奇偶性的判断),时间复杂度比较难估,这里小弟也忘记是多少了(囧)。
实现代码:
* Merge sorting
*/
MERGE(new Sortable() {
public <T extends Comparable<T>> void sort(T[] array, boolean ascend) {
this.sort(array, 0, array.length – 1, ascend);
}
private <T extends Comparable<T>> void sort(T[] array, int lo, int hi, boolean ascend) {
// OPTIMIZE ONE
// if the substring's length is less than 20,
// use insertion sort to reduce recursive invocation
if (hi – lo < 20) {
for (int i = lo + 1; i <= hi; i++) {
T toInsert = array[i];
int j = i;
for (; j > lo; j–) {
int compare = array[j - 1].compareTo(toInsert);
if (compare == 0 || compare < 0 == ascend) {
break;
}
array[j] = array[j - 1];
}
array[j] = toInsert;
}
return;
}
int mid = lo + (hi – lo) / 2;
sort(array, lo, mid, ascend);
sort(array, mid + 1, hi, ascend);
merge(array, lo, mid, hi, ascend);
}
private <T extends Comparable<T>> void merge(T[] array, int lo, int mid, int hi, boolean ascend) {
// OPTIMIZE TWO
// if it is already in right order, skip this merge
// since there's no need to do so
int leftEndCompareToRigthStart = array[mid].compareTo(array[mid + 1]);
if (leftEndCompareToRigthStart == 0 || leftEndCompareToRigthStart < 0 == ascend) {
return;
}
@SuppressWarnings("unchecked")
T[] arrayCopy = (T[]) new Comparable[hi - lo + 1];
System.arraycopy(array, lo, arrayCopy, 0, arrayCopy.length);
int lowIdx = 0;
int highIdx = mid – lo + 1;
for (int i = lo; i <= hi; i++) {
if (lowIdx > mid – lo) {
// left sub array exhausted
array[i] = arrayCopy[highIdx++];
} else if (highIdx > hi – lo) {
// right sub array exhausted
array[i] = arrayCopy[lowIdx++];
} else if (arrayCopy[lowIdx].compareTo(arrayCopy[highIdx]) < 0 == ascend) {
array[i] = arrayCopy[lowIdx++];
} else {
array[i] = arrayCopy[highIdx++];
}
}
}
})
6. 快速排序
快速排序也是用归并方法实现的一个“分而治之”的排序算法,它的魅力之处在于它能在每次 partition (排序算法的核心所在)都能为一个数组元素确定其排序最终正确位置(一次就定位准,下次循环就不考虑这个元素了)。
Java中常用的6种排序算法详细分解的更多相关文章
- 【Java学习笔记之十一】Java中常用的8大排序算法详解总结
分类: 1)插入排序(直接插入排序.希尔排序) 2)交换排序(冒泡排序.快速排序) 3)选择排序(直接选择排序.堆排序) 4)归并排序 5)分配排序(基数排序) 所需辅助空间最多:归并排序 所需辅助空 ...
- java算法03 - 常用的8种排序算法
Java常用的八种排序算法: 插入排序 - 直接插入排序 每次将待排序的记录按照关键字的大小,插入到前面已经排好序的记录的适当位置.直到全部记录插入完成. 代码实现 /** * 直接插入排序 O(n^ ...
- 学习Java绝对要懂的,Java编程中最常用的几种排序算法!
今天给大家分享一下Java中几种常见的排序算法的Java代码 推荐一下我的Java学习羊君前616,中959,最后444.把数字串联起来! ,群里有免费的学习视频和项目给大家练手.大神有空时也 ...
- 算法分析中最常用的几种排序算法(插入排序、希尔排序、冒泡排序、选择排序、快速排序,归并排序)C 语言版
每次开始动手写算法,都是先把插入排序,冒泡排序写一遍,十次有九次是重复的,所以这次下定决心,将所有常规的排序算法写了一遍,以便日后熟悉. 以下代码总用一个main函数和一个自定义的CommonFunc ...
- 对比几种在ROS中常用的几种SLAM算法
在此因为要总结写一个文档,所以查阅资料,将总结的内容记录下来,欢迎大家指正! 文章将介绍使用的基于机器人操作系统(ROS)框架工作的SLAM算法. 在ROS中提供的五种基于2D激光的SLAM算法分别是 ...
- Java中常用的四种线程池
在Java中使用线程池,可以用ThreadPoolExecutor的构造函数直接创建出线程池实例,如何使用参见之前的文章Java线程池构造参数详解.不过,在Executors类中,为我们提供了常用线程 ...
- Objective-C实现常用的4种排序算法
OC实现的4种排序又来了! 4种排序分别是:快速排序.冒泡排序.选择排序.插入排序,其他的我就不写了,因为OC里的数组中不能存放基本数据类型,如int不能存放,只能放对象,所以所有的数据我用了NSNu ...
- Java中UIManager的几种外观的详细讲解
Java'中的几种Look and Feel 1.Metal风格 (默认) String lookAndFeel = "javax.swing.plaf.metal.MetalLookAnd ...
- 一遍记住Java常用的八种排序算法
1.直接插入排序 经常碰到这样一类排序问题:把新的数据插入到已经排好的数据列中. 将第一个数和第二个数排序,然后构成一个有序序列 将第三个数插入进去,构成一个新的有序序列. 对第四个数.第五个数--直 ...
随机推荐
- 解决Django在mariadb创建的表插入中文乱码的问题
1.确保你的mariadb数据库的character_set_connection.character_set_database.character_set_server的编码均为utf8 Maria ...
- ubuntu16.04 安装composer和 laravel
一.安装composer $ sudo apt-get update $ sudo apt-get install wget 下载composer.phar $ wget https://getcom ...
- jQuery文档处理
1.wrap 把所有匹配的元素用其他元素的结构化标记包裹起来.(我的理解就是给匹配的元素穿一件衣服) 把所有的段落用一个新创建的div包裹起来 $("p").wrap(" ...
- 妙用next数组打表求最小循环节len
https://www.cnblogs.com/njczy2010/p/3930688.html https://blog.csdn.net/dominating413421391/article/d ...
- 挑战python 之一马当先(python的广搜)
下过象棋的人都知道,马只能走'日'字形(包括旋转90°的日),现在想象一下,给你一个n行m列网格棋盘, 棋盘的左下角有一匹马,请你计算至少需要几步可以将它移动到棋盘的右上角,若无法走到,则输出-1. ...
- jquery获取iframe里的元素
var eleInIframe = $("iframe").contents().find("#eleId"); 绑定事件: eleInIframe.clic ...
- [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)
题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...
- 【分块】计蒜客17120 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 G. Xor
题意:给一棵树,每个点有权值.q次询问a,b,k,问你从a点到b点,每次跳距离k,权值的异或和? 预处理每个点往其根节点的路径上隔1~sqrt(n)的距离的异或和,然后把询问拆成a->lca(a ...
- 【平衡树】【pb_ds】 bzoj1861 [Zjoi2006]Book 书架
需要用数组记录编号为i的书的位置,和位置i处的书的编号. Code: #include<cstdio> #include<ext/pb_ds/assoc_container.hpp& ...
- 【KMP模板】POJ3461-Oulipo
[题意] 找出第一个字符串在第二个字符串中出现次数. [注意点] 一定要先将strlen存下来,而不能每次用每次求,否则会TLE! #include<iostream> #include& ...