RobHess的SIFT源码分析:imgfeatures.h和imgfeatures.c文件
SIFT源码分析系列文章的索引在这里:RobHess的SIFT源码分析:综述
imgfeatures.h中有SIFT特征点结构struct feature的定义,除此之外还有一些特征点的导入导出以及特征点绘制函数的声明。
对应的imgfeatures.c文件中是特征点的导入导出以及特征点绘制函数的实现。
特征点的类型有两种,一种是是牛津大学VGG提供的源码中的特征点格式,另一种是David.Lowe提供的源码中的特征点格式。
struct feature结构可以兼容这两种特征点格式,但一般用的多的还是Lowe格式的特征点,源码中默认的特征点格式也是Lowe格式的。
特征点结构体struct feature的定义如下:
- /*特征点结构体
- 此结构体可存储2中类型的特征点:
- FEATURE_OXFD表示是牛津大学VGG提供的源码中的特征点格式,
- FEATURE_LOWE表示是David.Lowe提供的源码中的特征点格式。
- 如果是OXFD类型的特征点,结构体中的a,b,c成员描述了特征点周围的仿射区域(椭圆的参数),即邻域。
- 如果是LOWE类型的特征点,结构体中的scl和ori成员描述了特征点的大小和方向。
- fwd_match,bck_match,mdl_match一般同时只有一个起作用,用来指明此特征点对应的匹配点
- */
- struct feature
- {
- double x; /**< x coord */ //特征点的x坐标
- double y; /**< y coord */ //特征点的y坐标
- double a; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数
- double b; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数
- double c; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数
- double scl; /**< scale of a Lowe-style feature *///LOWE特征点的尺度
- double ori; /**< orientation of a Lowe-style feature */ //LOWE特征点的方向
- int d; /**< descriptor length */ //特征描述子的长度,即维数,一般是128
- double descr[FEATURE_MAX_D]; /**< descriptor */ //128维的特征描述子,即一个double数组
- int type; /**< feature type, OXFD or LOWE */ //特征点类型
- int category; /**< all-purpose feature category */
- struct feature* fwd_match; /**< matching feature from forward image */ //指明此特征点对应的匹配点
- struct feature* bck_match; /**< matching feature from backmward image */ //指明此特征点对应的匹配点
- struct feature* mdl_match; /**< matching feature from model */ //指明此特征点对应的匹配点
- CvPoint2D64f img_pt; /**< location in image */ //特征点的坐标,等于(x,y)
- CvPoint2D64f mdl_pt; /**< location in model */ //当匹配类型是mdl_match时用到
- void* feature_data; /**< user-definable data */ //用户定义的数据:
- //在SIFT极值点检测中,是detection_data结构的指针
- //在k-d树搜索中,是bbf_data结构的指针
- //在RANSAC算法中,是ransac_data结构的指针
- };
将Lowe格式的特征点导出到txt文件后,文件的格式如下图:
第一行的两个数分别是特征点的总个数(上图只截取了2个特征描述子)和特征描述子的维数(默认是128)
然后是每个特征点的数据,每个特征点的第一行的四个数分别是:特征点的y坐标,x坐标,特征点的尺度,特征点的方向
然后是128个整数,即128维的特征描述子,共7行,前6行每行20个,最后一行8个。
默认情况下,检测出的特征点是按照尺度的降序排列的。
下面是imgfeatures.h和imgfeatures.c文件的注释:
imgfeatures.h
- /**@file
- Functions and structures for dealing with image features
- Copyright (C) 2006-2010 Rob Hess <hess@eecs.oregonstate.edu>
- @version 1.1.2-20100521
- */
- /*
- 此文件中定义了存储特征点的结构体feature,以及几个函数原型的声明:
- 1、特征点的导入导出
- 2、特征点绘制
- */
- #ifndef IMGFEATURES_H
- #define IMGFEATURES_H
- #include "cxcore.h"
- /*特征点的类型:
- FEATURE_OXFD表示是牛津大学VGG提供的源码中的特征点格式,
- FEATURE_LOWE表示是David.Lowe提供的源码中的特征点格式
- */
- /** FEATURE_OXFD <BR> FEATURE_LOWE */
- enum feature_type
- {
- FEATURE_OXFD,
- FEATURE_LOWE,
- };
- /*特征点匹配类型:
- FEATURE_FWD_MATCH:表明feature结构中的fwd_match域是对应的匹配点
- FEATURE_BCK_MATCH:表明feature结构中的bck_match域是对应的匹配点
- FEATURE_MDL_MATCH:表明feature结构中的mdl_match域是对应的匹配点
- */
- /** FEATURE_FWD_MATCH <BR> FEATURE_BCK_MATCH <BR> FEATURE_MDL_MATCH */
- enum feature_match_type
- {
- FEATURE_FWD_MATCH,
- FEATURE_BCK_MATCH,
- FEATURE_MDL_MATCH,
- };
- /*画出的特征点的颜色*/
- /* colors in which to display different feature types */
- #define FEATURE_OXFD_COLOR CV_RGB(255,255,0)
- #define FEATURE_LOWE_COLOR CV_RGB(255,0,255)
- /*最大特征描述子长度,定为128*/
- /** max feature descriptor length */
- #define FEATURE_MAX_D 128
- /*特征点结构体
- 此结构体可存储2中类型的特征点:
- FEATURE_OXFD表示是牛津大学VGG提供的源码中的特征点格式,
- FEATURE_LOWE表示是David.Lowe提供的源码中的特征点格式。
- 如果是OXFD类型的特征点,结构体中的a,b,c成员描述了特征点周围的仿射区域(椭圆的参数),即邻域。
- 如果是LOWE类型的特征点,结构体中的scl和ori成员描述了特征点的大小和方向。
- fwd_match,bck_match,mdl_match一般同时只有一个起作用,用来指明此特征点对应的匹配点
- */
- /**
- Structure to represent an affine invariant image feature. The fields
- x, y, a, b, c represent the affine region around the feature:
- a(x-u)(x-u) + 2b(x-u)(y-v) + c(y-v)(y-v) = 1
- */
- struct feature
- {
- double x; /**< x coord */ //特征点的x坐标
- double y; /**< y coord */ //特征点的y坐标
- double a; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数
- double b; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数
- double c; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数
- double scl; /**< scale of a Lowe-style feature *///LOWE特征点的尺度
- double ori; /**< orientation of a Lowe-style feature */ //LOWE特征点的方向
- int d; /**< descriptor length */ //特征描述子的长度,即维数,一般是128
- double descr[FEATURE_MAX_D]; /**< descriptor */ //128维的特征描述子,即一个double数组
- int type; /**< feature type, OXFD or LOWE */ //特征点类型
- int category; /**< all-purpose feature category */
- struct feature* fwd_match; /**< matching feature from forward image */ //指明此特征点对应的匹配点
- struct feature* bck_match; /**< matching feature from backmward image */ //指明此特征点对应的匹配点
- struct feature* mdl_match; /**< matching feature from model */ //指明此特征点对应的匹配点
- CvPoint2D64f img_pt; /**< location in image */ //特征点的坐标,等于(x,y)
- CvPoint2D64f mdl_pt; /**< location in model */ //当匹配类型是mdl_match时用到
- void* feature_data; /**< user-definable data */ //用户定义的数据:
- //在SIFT极值点检测中,是detection_data结构的指针
- //在k-d树搜索中,是bbf_data结构的指针
- //在RANSAC算法中,是ransac_data结构的指针
- };
- /*从文件中读入图像特征
- 文件中的特征点格式必须是FEATURE_OXFD或FEATURE_LOWE格式
- 参数:
- filename:文件名
- type:特征点类型
- feat:用来存储特征点的feature数组的指针
- 返回值:导入的特征点个数
- */
- /**
- Reads image features from file. The file should be formatted as from
- the code provided by the Visual Geometry Group at Oxford or from the
- code provided by David Lowe.
- @param filename location of a file containing image features
- @param type determines how features are input. If \a type is FEATURE_OXFD,
- the input file is treated as if it is from the code provided by the VGG
- at Oxford: http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html
- <BR><BR>
- If \a type is FEATURE_LOWE, the input file is treated as if it is from
- David Lowe's SIFT code: http://www.cs.ubc.ca/~lowe/keypoints
- @param feat pointer to an array in which to store imported features; memory for
- this array is allocated by this function and must be freed by the caller using free(*feat)
- @return Returns the number of features imported from filename or -1 on error
- */
- extern int import_features( char* filename, int type, struct feature** feat );
- /*导出feature数组到文件
- 参数:
- filename:文件名
- feat:特征数组
- n:特征点个数
- 返回值:0:成功;1:失败
- */
- /**
- Exports a feature set to a file formatted depending on the type of
- features, as specified in the feature struct's type field.
- @param filename name of file to which to export features
- @param feat feature array
- @param n number of features
- @return Returns 0 on success or 1 on error
- */
- extern int export_features( char* filename, struct feature* feat, int n );
- /*在图片上画出特征点
- 参数:
- img:图像
- feat:特征点数组
- n:特征点个数
- */
- /**
- Displays a set of features on an image
- @param img image on which to display features
- @param feat array of Oxford-type features
- @param n number of features
- */
- extern void draw_features( IplImage* img, struct feature* feat, int n );
- /*计算两个特征描述子间的欧氏距离的平方
- 参数:
- f1:第一个特征点
- f2:第二个特征点
- 返回值:欧氏距离的平方
- */
- /**
- Calculates the squared Euclidian distance between two feature descriptors.
- @param f1 first feature
- @param f2 second feature
- @return Returns the squared Euclidian distance between the descriptors of
- \a f1 and \a f2.
- */
- extern double descr_dist_sq( struct feature* f1, struct feature* f2 );
- #endif
imgfeatures.c文件
- /*
- Functions and structures for dealing with image features
- Copyright (C) 2006-2010 Rob Hess <hess@eecs.oregonstate.edu>
- @version 1.1.2-20100521
- */
- /*
- 此文件中有几个函数的实现:特征点的导入导出,特征点的绘制
- */
- #include "utils.h"
- #include "imgfeatures.h"
- #include <cxcore.h>
- #include <math.h>
- /************************ 未暴露接口的一些本地函数的声明 **************************/
- static int import_oxfd_features( char*, struct feature** );//导入OXFD格式特征点
- static int export_oxfd_features( char*, struct feature*, int );//导出OXFD格式特征点
- static void draw_oxfd_features( IplImage*, struct feature*, int );//画OXFD格式特征点
- static void draw_oxfd_feature( IplImage*, struct feature*, CvScalar );//画单个点
- static int import_lowe_features( char*, struct feature** );//导入LOWE格式特征点
- static int export_lowe_features( char*, struct feature*, int );//导出LOWE格式特征点
- static void draw_lowe_features( IplImage*, struct feature*, int );//画LOWE格式特征点
- static void draw_lowe_feature( IplImage*, struct feature*, CvScalar );//画单个点
- /*从文件中读入图像特征
- 文件中的特征点格式必须是FEATURE_OXFD或FEATURE_LOWE格式
- 参数:
- filename:文件名
- type:特征点类型
- feat:用来存储特征点的feature数组的指针
- 返回值:导入的特征点个数
- */
- /*
- Reads image features from file. The file should be formatted as from
- the code provided by the Visual Geometry Group at Oxford:
- @param filename location of a file containing image features
- @param type determines how features are input. If \a type is FEATURE_OXFD,
- the input file is treated as if it is from the code provided by the VGG
- at Oxford:http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html
- If \a type is FEATURE_LOWE, the input file is treated as if it is from
- David Lowe's SIFT code:http://www.cs.ubc.ca/~lowe/keypoints
- @param feat pointer to an array in which to store features
- @return Returns the number of features imported from filename or -1 on error
- */
- int import_features( char* filename, int type, struct feature** feat )
- {
- int n;
- //根据特征点类型,调用不同的函数完成导入功能
- switch( type )
- {
- case FEATURE_OXFD:
- n = import_oxfd_features( filename, feat );//调用函数,导入OXFD格式特征点
- break;
- case FEATURE_LOWE:
- n = import_lowe_features( filename, feat );//调用函数,导入LOWE格式特征点
- break;
- default: //特征点格式无法识别
- fprintf( stderr, "Warning: import_features(): unrecognized feature" \
- "type, %s, line %d\n", __FILE__, __LINE__ );
- return -1;
- }
- //导入失败
- if( n == -1 )
- fprintf( stderr, "Warning: unable to import features from %s," \
- " %s, line %d\n", filename, __FILE__, __LINE__ );
- return n;
- }
- /*导出feature数组到文件
- 参数:
- filename:文件名
- feat:特征数组
- n:特征点个数
- 返回值:0:成功;1:失败
- */
- /*
- Exports a feature set to a file formatted depending on the type of
- features, as specified in the feature struct's type field.
- @param filename name of file to which to export features
- @param feat feature array
- @param n number of features
- @return Returns 0 on success or 1 on error
- */
- int export_features( char* filename, struct feature* feat, int n )
- {
- int r, type;
- //参数合法性检查
- if( n <= 0 || ! feat )
- {
- fprintf( stderr, "Warning: no features to export, %s line %d\n",
- __FILE__, __LINE__ );
- return 1;
- }
- type = feat[0].type;//特征点的类型、
- //根据特征点类型,调用不同的函数完成导出功能
- switch( type )
- {
- case FEATURE_OXFD:
- r = export_oxfd_features( filename, feat, n );//调用函数,导出OXFD格式特征点
- break;
- case FEATURE_LOWE:
- r = export_lowe_features( filename, feat, n );//调用函数,导出LOWE格式特征点
- break;
- default:
- fprintf( stderr, "Warning: export_features(): unrecognized feature" \
- "type, %s, line %d\n", __FILE__, __LINE__ );
- return -1;
- }
- if( r ) //导出函数返回值非0,表示导出失败
- fprintf( stderr, "Warning: unable to export features to %s," \
- " %s, line %d\n", filename, __FILE__, __LINE__ );
- return r;
- }
- /*在图片上画出特征点
- 参数:
- img:图像
- feat:特征点数组
- n:特征点个数
- */
- /*
- Draws a set of features on an image
- @param img image on which to draw features
- @param feat array of features
- @param n number of features
- */
- void draw_features( IplImage* img, struct feature* feat, int n )
- {
- int type;
- //参数合法性检查
- if( n <= 0 || ! feat )
- {
- fprintf( stderr, "Warning: no features to draw, %s line %d\n",
- __FILE__, __LINE__ );
- return;
- }
- type = feat[0].type;//特征点的类型
- //根据特征点类型,调用不同的函数完成绘图功能
- switch( type )
- {
- case FEATURE_OXFD:
- draw_oxfd_features( img, feat, n );//调用函数,在图像上画OXFD格式特征点
- break;
- case FEATURE_LOWE:
- draw_lowe_features( img, feat, n );//调用函数,在图像上画LOWE格式特征点
- break;
- default:
- fprintf( stderr, "Warning: draw_features(): unrecognized feature" \
- " type, %s, line %d\n", __FILE__, __LINE__ );
- break;
- }
- }
- /*计算两个特征描述子间的欧氏距离的平方
- 参数:
- f1:第一个特征点
- f2:第二个特征点
- 返回值:欧氏距离的平方
- */
- /*
- Calculates the squared Euclidian distance between two feature descriptors.
- @param f1 first feature
- @param f2 second feature
- @return Returns the squared Euclidian distance between the descriptors off1 and f2.
- */
- double descr_dist_sq( struct feature* f1, struct feature* f2 )
- {
- double diff, dsq = 0;
- double* descr1, * descr2;
- int i, d;
- d = f1->d;//f1的特征描述子的长度
- if( f2->d != d )//若f1和f2的特征描述子长度不同,返回
- return DBL_MAX;
- descr1 = f1->descr;//f1的特征描述子,一个double数组
- descr2 = f2->descr;//f2的特征描述子,一个double数组
- //计算欧氏距离的平方,即对应元素的差的平方和
- for( i = 0; i < d; i++ )
- {
- diff = descr1[i] - descr2[i];
- dsq += diff*diff;
- }
- return dsq;
- }
- /***************************** 一些未暴露接口的内部函数 *******************************/
- /***************************** Local Functions *******************************/
- /*从文件中读入OXFD格式的图像特征
- 参数:
- filename:文件名
- features:用来存储特征点的feature数组的指针
- 返回值:导入的特征点个数
- */
- /*
- Reads image features from file. The file should be formatted as from
- the code provided by the Visual Geometry Group at Oxford:
- http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html
- @param filename location of a file containing image features
- @param features pointer to an array in which to store features
- @return Returns the number of features imported from filename or -1 on error
- */
- static int import_oxfd_features( char* filename, struct feature** features )
- {
- struct feature* f;//第一个特征点的指针
- int i, j, n, d;
- double x, y, a, b, c, dv;
- FILE* file;//文件指针
- if( ! features )
- fatal_error( "NULL pointer error, %s, line %d", __FILE__, __LINE__ );
- //打开文件
- if( ! ( file = fopen( filename, "r" ) ) )
- {
- fprintf( stderr, "Warning: error opening %s, %s, line %d\n",
- filename, __FILE__, __LINE__ );
- return -1;
- }
- //读入特征描述子维数和特征点个数
- /* read dimension and number of features */
- if( fscanf( file, " %d %d ", &d, &n ) != 2 )
- {
- fprintf( stderr, "Warning: file read error, %s, line %d\n",
- __FILE__, __LINE__ );
- return -1;
- }
- //特征描述子维数大于定义的最大维数,出错
- if( d > FEATURE_MAX_D )
- {
- fprintf( stderr, "Warning: descriptor too long, %s, line %d\n",
- __FILE__, __LINE__ );
- return -1;
- }
- //分配内存,n个feature结构大小,返回首地址给f
- f = calloc( n, sizeof(struct feature) );
- //遍历文件中的n个特征点
- for( i = 0; i < n; i++ )
- {
- //读入仿射区域参数
- /* read affine region parameters */
- if( fscanf( file, " %lf %lf %lf %lf %lf ", &x, &y, &a, &b, &c ) != 5 )
- {
- fprintf( stderr, "Warning: error reading feature #%d, %s, line %d\n",
- i+1, __FILE__, __LINE__ );
- free( f );//发生错误后释放内存
- return -1;
- }
- //给第i个特征点赋值
- f[i].img_pt.x = f[i].x = x;//特征点的x坐标
- f[i].img_pt.y = f[i].y = y;//特征点的y坐标
- f[i].a = a;
- f[i].b = b;
- f[i].c = c;
- f[i].d = d;
- f[i].type = FEATURE_OXFD;//特征点类型
- //读入特征描述子
- /* read descriptor */
- for( j = 0; j < d; j++ )
- {
- if( ! fscanf( file, " %lf ", &dv ) )
- {
- fprintf( stderr, "Warning: error reading feature descriptor" \
- " #%d, %s, line %d\n", i+1, __FILE__, __LINE__ );
- free( f );//发生错误后释放内存
- return -1;
- }
- f[i].descr[j] = dv;//赋给第i个特征点的第j个特征描述符
- }
- //其他一些没什么用的参数
- f[i].scl = f[i].ori = 0;//OXFD特征点无此参数
- f[i].category = 0;
- f[i].fwd_match = f[i].bck_match = f[i].mdl_match = NULL;
- f[i].mdl_pt.x = f[i].mdl_pt.y = -1;
- f[i].feature_data = NULL;
- }
- //关闭文件
- if( fclose(file) )
- {
- fprintf( stderr, "Warning: file close error, %s, line %d\n",
- __FILE__, __LINE__ );
- free( f );//发生错误后释放内存
- return -1;
- }
- *features = f;//将第一个特征点的指针赋给*feature
- return n;//返回读入的特征点个数
- }
- /*导出OXFD格式的特征点集到文件
- 参数:
- filename:文件名
- feat:特征数组
- n:特征点个数
- 返回值:0:成功;1:失败
- */
- /*
- Exports a feature set to a file formatted as one from the code provided
- by the Visual Geometry Group at Oxford:
- http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html
- @param filename name of file to which to export features
- @param feat feature array
- @param n number of features
- @return Returns 0 on success or 1 on error
- */
- static int export_oxfd_features( char* filename, struct feature* feat, int n )
- {
- FILE* file;
- int i, j, d;
- if( n <= 0 )
- {
- fprintf( stderr, "Warning: feature count %d, %s, line %s\n",
- n, __FILE__, __LINE__ );
- return 1;
- }
- //打开文件
- if( ! ( file = fopen( filename, "w" ) ) )
- {
- fprintf( stderr, "Warning: error opening %s, %s, line %d\n",
- filename, __FILE__, __LINE__ );
- return 1;
- }
- d = feat[0].d;//特征描述子的维数
- fprintf( file, "%d\n%d\n", d, n );//首先写入特征描述子的维数和特征点个数
- //依次写入每个特征点的信息
- for( i = 0; i < n; i++ )
- {
- //写入仿射区域参数
- fprintf( file, "%f %f %f %f %f", feat[i].x, feat[i].y, feat[i].a,
- feat[i].b, feat[i].c );
- //写入d个特征描述子的元素
- for( j = 0; j < d; j++ )
- fprintf( file, " %f", feat[i].descr[j] );
- fprintf( file, "\n" );//换行
- }
- //关闭文件
- if( fclose(file) )
- {
- fprintf( stderr, "Warning: file close error, %s, line %d\n",
- __FILE__, __LINE__ );
- return 1;
- }
- return 0;
- }
- /*在图像上画出OXFD类型的特征点
- 参数:
- img:图像指针
- feat:特征数组
- n:特征个数
- */
- /*
- Draws Oxford-type affine features
- @param img image on which to draw features
- @param feat array of Oxford-type features
- @param n number of features
- */
- static void draw_oxfd_features( IplImage* img, struct feature* feat, int n )
- {
- CvScalar color = CV_RGB( 255, 255, 255 );//颜色
- int i;
- if( img-> nChannels > 1 )
- color = FEATURE_OXFD_COLOR;
- //调用函数,依次画出每个特征点
- for( i = 0; i < n; i++ )
- draw_oxfd_feature( img, feat + i, color );
- }
- /*在图像上画单个OXFD特征点
- 参数:
- img:图像指针
- feat:要画的特征点
- color:颜色
- */
- /*
- Draws a single Oxford-type feature
- @param img image on which to draw
- @param feat feature to be drawn
- @param color color in which to draw
- */
- static void draw_oxfd_feature( IplImage* img, struct feature* feat, CvScalar color )
- {
- double m[4] = { feat->a, feat->b, feat->b, feat->c };
- double v[4] = { 0 };//特征向量的数据
- double e[2] = { 0 };//特征值的数据
- CvMat M, V, E;
- double alpha, l1, l2;
- //计算椭圆的轴线和方向
- /* compute axes and orientation of ellipse surrounding affine region */
- cvInitMatHeader( &M, 2, 2, CV_64FC1, m, CV_AUTOSTEP );//矩阵
- cvInitMatHeader( &V, 2, 2, CV_64FC1, v, CV_AUTOSTEP );//2个2*1的特征向量组成的矩阵
- cvInitMatHeader( &E, 2, 1, CV_64FC1, e, CV_AUTOSTEP );//特征值
- cvEigenVV( &M, &V, &E, DBL_EPSILON, 0, 0 );//计算特征值和特征向量
- l1 = 1 / sqrt( e[1] );
- l2 = 1 / sqrt( e[0] );
- alpha = -atan2( v[1], v[0] );
- alpha *= 180 / CV_PI;
- //画椭圆和十字星
- cvEllipse( img, cvPoint( feat->x, feat->y ), cvSize( l2, l1 ), alpha,
- 0, 360, CV_RGB(0,0,0), 3, 8, 0 );
- cvEllipse( img, cvPoint( feat->x, feat->y ), cvSize( l2, l1 ), alpha,
- 0, 360, color, 1, 8, 0 );
- cvLine( img, cvPoint( feat->x+2, feat->y ), cvPoint( feat->x-2, feat->y ),
- color, 1, 8, 0 );
- cvLine( img, cvPoint( feat->x, feat->y+2 ), cvPoint( feat->x, feat->y-2 ),
- color, 1, 8, 0 );
- }
- /*从文件中读入LOWE特征点
- 参数:
- filename:文件名
- features:存放特征点的特征数组的指针
- 返回值:读入的特征点个数
- */
- /*
- Reads image features from file. The file should be formatted as from
- the code provided by David Lowe:http://www.cs.ubc.ca/~lowe/keypoints/
- @param filename location of a file containing image features
- @param features pointer to an array in which to store features
- @return Returns the number of features imported from filename or -1 on error
- */
- static int import_lowe_features( char* filename, struct feature** features )
- {
- struct feature* f;//第一个特征点的指针
- int i, j, n, d;
- double x, y, s, o, dv;
- FILE* file;
- if( ! features )
- fatal_error( "NULL pointer error, %s, line %d", __FILE__, __LINE__ );
- //打开文件
- if( ! ( file = fopen( filename, "r" ) ) )
- {
- fprintf( stderr, "Warning: error opening %s, %s, line %d\n",
- filename, __FILE__, __LINE__ );
- return -1;
- }
- //首先读入特征点个数和特征描述子维数
- /* read number of features and dimension */
- if( fscanf( file, " %d %d ", &n, &d ) != 2 )
- {
- fprintf( stderr, "Warning: file read error, %s, line %d\n",
- __FILE__, __LINE__ );
- return -1;
- }
- //特征描述子维数大于定义的最大维数,出错
- if( d > FEATURE_MAX_D )
- {
- fprintf( stderr, "Warning: descriptor too long, %s, line %d\n",
- __FILE__, __LINE__ );
- return -1;
- }
- //分配内存,n个feature结构大小,返回首地址给f
- f = calloc( n, sizeof(struct feature) );
- //依次读入n个特征点
- for( i = 0; i < n; i++ )
- {
- //读入特征点的坐标(注意x,y顺序),尺度和方向
- /* read affine region parameters */
- if( fscanf( file, " %lf %lf %lf %lf ", &y, &x, &s, &o ) != 4 )
- {
- fprintf( stderr, "Warning: error reading feature #%d, %s, line %d\n",
- i+1, __FILE__, __LINE__ );
- free( f );//出错后释放内存
- return -1;
- }
- //给第i个特征点赋值
- f[i].img_pt.x = f[i].x = x;//特征点的x坐标
- f[i].img_pt.y = f[i].y = y;//特征点的y坐标
- f[i].scl = s;//特征点的大小,即其主方向的梯度的模值
- f[i].ori = o;//特征点的方向,即其主方向
- f[i].d = d;//特征描述子的维数
- f[i].type = FEATURE_LOWE;//类型
- //读入特征描述子
- /* read descriptor */
- for( j = 0; j < d; j++ )
- {
- if( ! fscanf( file, " %lf ", &dv ) )
- {
- fprintf( stderr, "Warning: error reading feature descriptor" \
- " #%d, %s, line %d\n", i+1, __FILE__, __LINE__ );
- free( f );//出错后释放内存
- return -1;
- }
- f[i].descr[j] = dv;
- }
- //其他一些没什么用的参数
- f[i].a = f[i].b = f[i].c = 0;
- f[i].category = 0;
- f[i].fwd_match = f[i].bck_match = f[i].mdl_match = NULL;
- f[i].mdl_pt.x = f[i].mdl_pt.y = -1;
- }
- //关闭文件
- if( fclose(file) )
- {
- fprintf( stderr, "Warning: file close error, %s, line %d\n",
- __FILE__, __LINE__ );
- free( f );//出错后释放内存
- return -1;
- }
- *features = f;//首地址赋给*features
- return n;//返回读入的特征点个数
- }
- /*导出LOWE格式特征点集合到文件
- 参数:
- filename:文件名
- feat:特征点数组
- n:特征点个数
- 返回值:0:成功;1:失败
- */
- /*
- Exports a feature set to a file formatted as one from the code provided
- by David Lowe:http://www.cs.ubc.ca/~lowe/keypoints/
- @param filename name of file to which to export features
- @param feat feature array
- @param n number of features
- @return Returns 0 on success or 1 on error
- */
- static int export_lowe_features( char* filename, struct feature* feat, int n )
- {
- FILE* file;
- int i, j, d;
- if( n <= 0 )
- {
- fprintf( stderr, "Warning: feature count %d, %s, line %s\n",
- n, __FILE__, __LINE__ );
- return 1;
- }
- //打开文件
- if( ! ( file = fopen( filename, "w" ) ) )
- {
- fprintf( stderr, "Warning: error opening %s, %s, line %d\n",
- filename, __FILE__, __LINE__ );
- return 1;
- }
- d = feat[0].d;//特征描述子维数
- fprintf( file, "%d %d\n", n, d );//首先写入特征点个数和特征描述子维数
- //依次写入每个特征点的信息
- for( i = 0; i < n; i++ )
- {
- //写入特征点坐标(注意x,y顺序),尺度,方向
- fprintf( file, "%f %f %f %f", feat[i].y, feat[i].x,
- feat[i].scl, feat[i].ori );
- //写入特征描述子
- for( j = 0; j < d; j++ )
- {
- //每行20个元素
- /* write 20 descriptor values per line */
- if( j % 20 == 0 )
- fprintf( file, "\n" );
- fprintf( file, " %d", (int)(feat[i].descr[j]) );
- }
- fprintf( file, "\n" );
- }
- //关闭文件
- if( fclose(file) )
- {
- fprintf( stderr, "Warning: file close error, %s, line %d\n",
- __FILE__, __LINE__ );
- return 1;
- }
- return 0;
- }
- /*在图像上画LOWE特征点
- 参数:
- img:图像指针
- feat:特征点数组
- n:特征点个数
- */
- /*
- Draws Lowe-type features
- @param img image on which to draw features
- @param feat array of Oxford-type features
- @param n number of features
- */
- static void draw_lowe_features( IplImage* img, struct feature* feat, int n )
- {
- CvScalar color = CV_RGB( 255, 255, 255 );//颜色
- int i;
- if( img-> nChannels > 1 )
- color = FEATURE_LOWE_COLOR;
- //调用函数,依次画n个特征点
- for( i = 0; i < n; i++ )
- draw_lowe_feature( img, feat + i, color );
- }
- /*画单个LOWE特征点
- 参数:
- img:图像指针
- feat:要画的特征点
- color:颜色
- */
- /*
- Draws a single Lowe-type feature
- @param img image on which to draw
- @param feat feature to be drawn
- @param color color in which to draw
- */
- static void draw_lowe_feature( IplImage* img, struct feature* feat, CvScalar color )
- {
- int len, hlen, blen, start_x, start_y, end_x, end_y, h1_x, h1_y, h2_x, h2_y;
- double scl, ori;
- double scale = 5.0;
- double hscale = 0.75;
- CvPoint start, end, h1, h2;
- /* compute points for an arrow scaled and rotated by feat's scl and ori */
- //箭头杆的起点的坐标
- start_x = cvRound( feat->x );
- start_y = cvRound( feat->y );
- scl = feat->scl;//特征点的大小
- ori = feat->ori;//特征点的方向,弧度
- len = cvRound( scl * scale );//箭头杆的长度
- hlen = cvRound( scl * hscale );//箭头分叉的长度
- blen = len - hlen;
- //箭头杆的终点的坐标
- end_x = cvRound( len * cos( ori ) ) + start_x;
- end_y = cvRound( len * -sin( ori ) ) + start_y;
- //箭头的右分叉的起点的坐标
- h1_x = cvRound( blen * cos( ori + CV_PI / 18.0 ) ) + start_x;
- h1_y = cvRound( blen * -sin( ori + CV_PI / 18.0 ) ) + start_y;
- //箭头的左分叉的起点的坐标
- h2_x = cvRound( blen * cos( ori - CV_PI / 18.0 ) ) + start_x;
- h2_y = cvRound( blen * -sin( ori - CV_PI / 18.0 ) ) + start_y;
- start = cvPoint( start_x, start_y );//箭头杆的起点
- end = cvPoint( end_x, end_y );//箭头杆的终点
- h1 = cvPoint( h1_x, h1_y );//箭头的右分叉的起点
- h2 = cvPoint( h2_x, h2_y );//箭头的左分叉的起点
- cvLine( img, start, end, color, 1, 8, 0 );//画箭头杆
- cvLine( img, end, h1, color, 1, 8, 0 );//画右分叉
- cvLine( img, end, h2, color, 1, 8, 0 );//画左分叉
- }
RobHess的SIFT源码分析:imgfeatures.h和imgfeatures.c文件的更多相关文章
- 阅读《RobHess的SIFT源码分析:综述》笔记
今天总算是机缘巧合的找到了照样一篇纲要性质的文章. 如是能早一些找到就好了.不过“在你认为为时已晚的时候,其实还为时未晚”倒是也能聊以自慰,不过不能经常这样迷惑自己,毕竟我需要开始跑了! 就照着这个大 ...
- RobHess的SIFT源码分析:综述
最初的目的是想做全景图像拼接,一开始找了OpenCV中自带的全景拼接的样例,用的是Stitcher类,可以很方便的实现全景拼接,而且效果很好,但是不利于做深入研究. 使用OpenCV中自带的Stitc ...
- 阅读《RobHess的SIFT源码分析:综述》笔记2
今天开始磕代码部分. part1: 1. sift特征提取. img1_Feat = cvCloneImage(img1);//复制图1,深拷贝,用来画特征点 img2_Feat = cvCloneI ...
- Solr4.8.0源码分析(12)之Lucene的索引文件(5)
Solr4.8.0源码分析(12)之Lucene的索引文件(5) 1. 存储域数据文件(.fdt和.fdx) Solr4.8.0里面使用的fdt和fdx的格式是lucene4.1的.为了提升压缩比,S ...
- Solr4.8.0源码分析(11)之Lucene的索引文件(4)
Solr4.8.0源码分析(11)之Lucene的索引文件(4) 1. .dvd和.dvm文件 .dvm是存放了DocValue域的元数据,比如DocValue偏移量. .dvd则存放了DocValu ...
- Solr4.8.0源码分析(10)之Lucene的索引文件(3)
Solr4.8.0源码分析(10)之Lucene的索引文件(3) 1. .si文件 .si文件存储了段的元数据,主要涉及SegmentInfoFormat.java和Segmentinfo.java这 ...
- Solr4.8.0源码分析(9)之Lucene的索引文件(2)
Solr4.8.0源码分析(9)之Lucene的索引文件(2) 一. Segments_N文件 一个索引对应一个目录,索引文件都存放在目录里面.Solr的索引文件存放在Solr/Home下的core/ ...
- Solr4.8.0源码分析(8)之Lucene的索引文件(1)
Solr4.8.0源码分析(8)之Lucene的索引文件(1) 题记:最近有幸看到觉先大神的Lucene的博客,感觉自己之前学习的以及工作的太为肤浅,所以决定先跟随觉先大神的博客学习下Lucene的原 ...
- Android源码分析(十七)----init.rc文件添加脚本代码
一:init.rc文件修改 开机后运行一次: chmod 777 /system/bin/bt_config.sh service bt_config /system/bin/bt_config.sh ...
随机推荐
- lesson 18 Electric currents in modern art
lesson18 Electric currents in modern art electricity n. 电力:电流; electric adj. 电的:电动的; electronic adj. ...
- 初学Direct X (2)
初学Direct X (2) 这一次要学习如何现实位图,尽管看过对双缓冲机制还有很多疑问,但是这并不阻碍我对他的入门了解 Direct3D提供了一个双重/后台缓冲区,在调用CreateDevice之时 ...
- NGUI制作流光效果
效果展示: 技巧: 1.勾选UIPanel下的Normal启用UI的法线贴图,并建立带有法线贴图的UI对象(此处用NGUI自带的Reflector.Atlas中的图作为UI). 2.建立点光源并为其添 ...
- C for阶乘
#include <stdio.h> int main(int argc, char **argv) { //定义三个变量 x n s ,n s的初始值为1; int x; i ...
- 【shell 练习3】用户管理脚本(一)
一.创建十个用户,密码为八位 [root@localhost ~]# cat UserManger02.sh #!/bin/bash . /etc/init.d/functions [ $UID -n ...
- 机器学习-线性回归LinearRegression
概述 今天要说一下机器学习中大多数书籍第一个讲的(有的可能是KNN)模型-线性回归.说起线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务.那什么是回归任务和分类任务呢?简单的来说 ...
- POJ 2449 Remmarguts' Date(第k短路のA*算法)
Description "Good man never makes girls wait or breaks an appointment!" said the mandarin ...
- Zen Coding && Emmet-Sublime 安装
Sublime Text 插件之:Emmet,旧版称:ex-Zen Coding 更名之后增加了CSS3和HTML5许多新特性.项目地址也从 code.google 移 github. 安装: Pac ...
- Discover the Web(栈模拟)
Description Standard web browsers contain features to move backward and forward among the pages rece ...
- java多线程三之线程协作与通信实例
多线程的难点主要就是多线程通信协作这一块了,前面笔记二中提到了常见的同步方法,这里主要是进行实例学习了,今天总结了一下3个实例: 1.银行存款与提款多线程实现,使用Lock锁和条件Condition. ...