题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数。

  看见这种一脸懵逼的题第一要务当然是简化题意。。。我们可以发现,序列回到原状的次数就是每个循环的规模(即在循环中的数字个数)的lcm,而且因为有n个数,显然所有循环的规模之和就是n,那么问题就被简化成了a1+a2+a3+...+ak=n,求lcm(a1,a2,a3,...,an)的个数。

  现在题意已经清楚多了,那咋写呢QAQ

  我们把一个数分解质因数,p为质数,那么A=p1^m1*p2^m2*p3^m3*...*ph^mh,我们令a1=p1^m1,a2=p2^m2,...,ah=ph^mh,易证a1+a2+a3+...+ah<=n(分<和=两种情况讨论),则A为一个可行解。

  于是问题又变成了求有多少种a1+a2+a3+...+ah<=n。

  即有多少种(m1,m2,m3,...,mh)使p1^m1+p2^m2+p3^m3+...+ph^mh<=n。

  令f[i][j]为前i个质数,p1^m1+p2^m2+p3^m3+...+pi^mi和为j的方案数,则有:

  f[i][j]=f[i-1][j]【这个质数不用】+sigma(f[i-1][j-p[i]^k])【j-p[i]^k>=0】

  tot为n以内的质数个数,则答案为sigma(f[tot][i])【0<=i<=n】

代码如下:

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#define ll long long
using namespace std;
ll f[][],ans;
int n,p[],tot;
bool v[];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
if(!v[i])
{
p[++tot]=i;
for(int j=;j*i<=n;j++)v[i*j]=true;
}
f[][]=;
for(int i=;i<=tot;i++)
for(int j=;j<=n;j++)
{
f[i][j]=f[i-][j];
for(int k=,sum=;j-sum*p[i]>=;k++)
{
sum*=p[i];
f[i][j]+=f[i-][j-sum];
}
}
for(int i=;i<=n;i++)
ans+=f[tot][i];
printf("%lld\n",ans);
}

bzoj1025: [SCOI2009]游戏(DP)的更多相关文章

  1. [BZOJ1025][SCOI2009]游戏 DP+置换群

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目中的排数就是多少次回到原来的序列.很显然对于题目所描述的任意一种对应法则,其中一 ...

  2. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  3. BZOJ1025 [SCOI2009]游戏 【置换群 + 背包dp】

    题目链接 BZOJ1025 题解 题意就是问一个\(1....n\)的排列在同一个置换不断重复下回到\(1...n\)可能需要的次数的个数 和置换群也没太大关系 我们只需知道同一个置换不断重复,实际上 ...

  4. 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)

    传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...

  5. bzoj1025 [SCOI2009]游戏——因数DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4 ...

  6. [BZOJ1025] [SCOI2009]游戏 解题报告

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  7. BZOJ1025: [SCOI2009]游戏

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  8. bzoj1025: [SCOI2009] 游戏 6

    DP. 每种排法的长度对应所有循环节长度的最小公倍数. 所以排法总数为和为n的几个数的最小公倍数的总数. #include<cstdio> #include<algorithm> ...

  9. [bzoj1025][SCOI2009]游戏 (分组背包)

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一 且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们 ...

随机推荐

  1. lesson 24 A skeleton in the cupboard

    lesson 24 A skeleton in the cupboard conceal sth from sb 对某人隐藏某事 He conceals his girlfriend from his ...

  2. python学习笔记03 --------------程序交互与格式化输出

    1.读取用户输入内容 语法:input() 例: name = input('你的名字是?) print('你好'+name) 程序会等待用户输入名字后打印:你好(用户输入的名字) 注意:input接 ...

  3. python 终极篇 --- form组件 与 modelForm

                                                           form组件                                       ...

  4. jetbrains系列激活

    没钱,只能DB了. 为了避免某些个人私自搭建服务器,以及自己搭建激活服务器,因此,决定使用破解包~~~. 注意:只要破解,就要屏蔽官方激活服务器:0.0.0.0 account.jetbrains.c ...

  5. leetcode9_C++判断一个整数是否是回文数

    判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 输出: true 示例 2: 输入: - 输出: false 解释: 从左向右读, 为 - ...

  6. POJ 1679 The Unique MST(最小生成树)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  7. iOS- 用MapKit和CoreLocation 来实现移动设备(地图与定位)

    1.前言 发现在很多的社交软件都引入了地图和定位功能,如果我们要想实现这两大功能,需要利用到两个框架:MapKit和CoreLocation   我们先来看看CoreLocation框架:   它可以 ...

  8. TCP系列17—重传—7、SACK下的重传

    我们之前介绍SACK选项的时候说过,SACK可以把接收端系列号空间的洞反映给发送端,因此发送端可以更充分的理解接收端的情况,而进行更好的重传恢复过程.这种过程有时候也叫做advanced loss r ...

  9. NeoLoad系列- 快速上手教程

    1.新建工程 2.点击录制脚本按钮 3.在弹出的开始录制对话框中,填写虚拟用户信息. Record in下拉框,用来填写用户路径,一般有三个容器组成: Init, Actions, and End.当 ...

  10. SQL SERVER技术内幕之4 子查询

    最外层查询的结果集会返回给调用者,称为外部查询.内部查询的结果是供外部查询使用的,也称为子查询.子查询可以分成独立子查询和相关子查询两类.独立子查询不依赖于它所属的外部查询,而相关子查询则须依赖它所属 ...