一个设备驱动的主要任务有两个: 
1. 存取设备的内存 
2. 处理设备产生的中断

对于第一个任务。UIO 核心实现了mmap()能够处理物理内存(physical memory),逻辑内存(logical memory), 
虚拟内存(virtual memory)。UIO驱动的编写是就不须要再考虑这些繁琐的细节。

第二个任务,对于设备中断的应答必须在内核空间进行。所以在内核空间有一小部分代码 
用来应答中断和禁止中断,可是其余的工作所有留给用户空间处理。

假设用户空间要等待一个设备中断,它仅仅须要简单的堵塞在对 /dev/uioX的read()操作上。 
当设备产生中断时,read()操作马上返回。

UIO 也实现了poll()系统调用。你能够使用 
select()来等待中断的发生。select()有一个超时參数能够用来实现有限时间内等待中断。

对设备的控制还能够通过/sys/class/uio下的各个文件的读写来完毕。你注冊的uio设备将会出如今该文件夹下。

假如你的uio设备是uio0那么映射的设备内存文件出如今 /sys/class/uio/uio0/maps/mapX。对该文件的读写就是 
对设备内存的读写。

例如以下的图描写叙述了uio驱动的内核部分。用户空间部分。和uio 框架以及内核内部函数的关系。

二:UIO驱动注册

首先来看一个简单的UIO驱动代码,代码来自网上,非原创,旨在学习

内核部分:

/*

* This is simple demon of uio driver.

* Version 1

*Compile:
* Save this file name it simple.c
* #echo "obj -m := simple.o" > Makefile
* #make -Wall -C /lib/modules/'uname -r'/build M='pwd' modules
*Load the module:
* #modprobe uio
* #insmod simple.ko
*/ #include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/uio_driver.h>
#include <linux/slab.h> /*struct uio_info {
struct uio_device *uio_dev; // 在__uio_register_device中初始化
const char *name; // 调用__uio_register_device之前必须初始化
const char *version; //调用__uio_register_device之前必须初始化
struct uio_mem mem[MAX_UIO_MAPS];
struct uio_port port[MAX_UIO_PORT_REGIONS];
long irq; //分配给uio设备的中断号,调用__uio_register_device之前必须初始化
unsigned long irq_flags;// 调用__uio_register_device之前必须初始化
void *priv; //
irqreturn_t (*handler)(int irq, struct uio_info *dev_info); //uio_interrupt中调用,用于中断处理
// 调用__uio_register_device之前必须初始化
int (*mmap)(struct uio_info *info, struct vm_area_struct *vma); //在uio_mmap中被调用,
// 执行设备打开特定操作
int (*open)(struct uio_info *info, struct inode *inode);//在uio_open中被调用,执行设备打开特定操作
int (*release)(struct uio_info *info, struct inode *inode);//在uio_device中被调用,执行设备打开特定操作
int (*irqcontrol)(struct uio_info *info, s32 irq_on);//在uio_write方法中被调用,执行用户驱动的
//特定操作。
};*/ struct uio_info kpart_info = {
.name = "kpart",
.version = "0.1",
.irq = UIO_IRQ_NONE,
};
static int drv_kpart_probe(struct device *dev);
static int drv_kpart_remove(struct device *dev);
static struct device_driver uio_dummy_driver = {
.name = "kpart",
.bus = &platform_bus_type,
.probe = drv_kpart_probe,
.remove = drv_kpart_remove,
}; static int drv_kpart_probe(struct device *dev)
{
printk("drv_kpart_probe(%p)\n",dev);
kpart_info.mem[0].addr = (unsigned long)kmalloc(1024,GFP_KERNEL); if(kpart_info.mem[0].addr == 0)
return -ENOMEM;
kpart_info.mem[0].memtype = UIO_MEM_LOGICAL;
kpart_info.mem[0].size = 1024; if(uio_register_device(dev,&kpart_info))
return -ENODEV;
return 0;
} static int drv_kpart_remove(struct device *dev)
{
uio_unregister_device(&kpart_info);
return 0;
} static struct platform_device * uio_dummy_device; static int __init uio_kpart_init(void)
{
uio_dummy_device = platform_device_register_simple("kpart",-1,NULL,0);
return driver_register(&uio_dummy_driver);
} static void __exit uio_kpart_exit(void)
{
platform_device_unregister(uio_dummy_device);
driver_unregister(&uio_dummy_driver);
} module_init(uio_kpart_init);
module_exit(uio_kpart_exit); MODULE_LICENSE("GPL");
MODULE_AUTHOR("IGB_UIO_TEST");
MODULE_DESCRIPTION("UIO dummy driver");

UIO的驱动注册与其他驱动类似,通过调用linux提供的uio API接口进行注册,在注册之前,所做的主要工作是填充uio_info结构体的信息,主要包括内存大小、类型等信息的填充。填充完毕后调用uio_register_device()函数,将uio_info注册到内核中。注册后,在/sys/class/uio/uioX,其中X是我们注册的第几个uio设备,比如uio0,在该文件夹下的map/map0会有我们刚才填充的一些信息,包括addr、name、size、offset,其中addr保存的是设备的物理地址,size保存的是地址的大小,这些在用户态会将其读出,并mmap至用户态进程空间,这样用户态便可直接操作设备的内存空间。

用户态:

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <errno.h> #define UIO_DEV "/dev/uio0"
#define UIO_ADDR "/sys/class/uio/uio0/maps/map0/addr"
#define UIO_SIZE "/sys/class/uio/uio0/maps/map0/size" static char uio_addr_buf[16]={0};
static char uio_size_buf[16]={0}; int main(void)
{
int uio_fd,addr_fd,size_fd;
int uio_size;
void *uio_addr, *access_address;
int n=0;
uio_fd = open(UIO_DEV,O_RDWR);
addr_fd = open(UIO_ADDR,O_RDONLY);
size_fd = open(UIO_SIZE,O_RDONLY);
if(addr_fd < 0 || size_fd < 0 || uio_fd < 0){
fprintf(stderr,"mmap:%s\n",strerror(errno));
exit(-1);
} n=read(addr_fd,uio_addr_buf,sizeof(uio_addr_buf));
if(n<0){
fprintf(stderr, "%s\n", strerror(errno));
exit(-1);
}
n=read(size_fd,uio_size_buf,sizeof(uio_size_buf));
if(n<0){
fprintf(stderr, "%s\n", strerror(errno));
exit(-1);
}
uio_addr = (void*)strtoul(uio_addr_buf,NULL,0);
uio_size = (int)strtol(uio_size_buf,NULL,0); access_address = mmap(NULL,uio_size,PROT_READ | PROT_WRITE,
MAP_SHARED,uio_fd,0);
if(access_address == (void*)-1){
fprintf(stderr,"mmap:%s\n",strerror(errno));
exit(-1);
} printf("The device address %p (lenth %d)\n"
"can be accessed over\n"
"logical address %p\n",uio_addr,uio_size,access_address);
/*
access_address = (void*)(long)mremap(access_address, getpagesize(),uio_size + getpagesize()+ 11111, MAP_SHARED); if(access_address == (void*)-1){
fprintf(stderr,"mremap: %s\n",strerror(errno));
exit(-1);
} printf(">>>AFTER REMAP:""logical address %p\n",access_address);
*/
return 0;
}

代码很简单,就是讲刚才那几个文件读出来,并且重新mmap出来,最后将其打印出来。由此我们可以简单的看到,想要操作uio设备,只需要重新mmap,而后我们便可操作一般的内存一样操作设备内存,那么dpdk的实现也是类似的,只不过更加复杂一点。

dpdk的uio实现的内核的代码主要在igb_uio.c中,整理一下主要的代码:

static struct pci_driver igbuio_pci_driver = {
.name = "igb_uio",
.id_table = NULL,
.probe = igbuio_pci_probe,
.remove = igbuio_pci_remove,
}; module_init(igbuio_pci_init_module); static int __init
igbuio_pci_init_module(void)
{
int ret; ret = igbuio_config_intr_mode(intr_mode);
if (ret < 0)
return ret; return pci_register_driver(&igbuio_pci_driver);
} #if LINUX_VERSION_CODE < KERNEL_VERSION(3,8,0)
static int __devinit
#else
static int
#endif
igbuio_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
struct rte_uio_pci_dev *udev; udev = kzalloc(sizeof(struct rte_uio_pci_dev), GFP_KERNEL);
if (!udev)
return -ENOMEM; /*
* enable device: ask low-level code to enable I/O and
* memory
*/
if (pci_enable_device(dev)) {
printk(KERN_ERR "Cannot enable PCI device\n");
goto fail_free;
} /*
* reserve device's PCI memory regions for use by this
* module
*/
if (pci_request_regions(dev, "igb_uio")) {
printk(KERN_ERR "Cannot request regions\n");
goto fail_disable;
} /* enable bus mastering on the device */
pci_set_master(dev); /* remap IO memory */
if (igbuio_setup_bars(dev, &udev->info))
goto fail_release_iomem; /* set 64-bit DMA mask */
if (pci_set_dma_mask(dev, DMA_BIT_MASK(64))) {
printk(KERN_ERR "Cannot set DMA mask\n");
goto fail_release_iomem;
} else if (pci_set_consistent_dma_mask(dev, DMA_BIT_MASK(64))) {
printk(KERN_ERR "Cannot set consistent DMA mask\n");
goto fail_release_iomem;
} /* fill uio infos */
udev->info.name = "Intel IGB UIO";
udev->info.version = "0.1";
udev->info.handler = igbuio_pci_irqhandler;
udev->info.irqcontrol = igbuio_pci_irqcontrol;
#ifdef CONFIG_XEN_DOM0
/* check if the driver run on Xen Dom0 */
if (xen_initial_domain())
udev->info.mmap = igbuio_dom0_pci_mmap;
#endif
udev->info.priv = udev;
udev->pdev = dev;
udev->mode = RTE_INTR_MODE_LEGACY;
spin_lock_init(&udev->lock); /* check if it need to try msix first */
if (igbuio_intr_mode_preferred == RTE_INTR_MODE_MSIX) {
int vector; for (vector = 0; vector < IGBUIO_NUM_MSI_VECTORS; vector ++)
udev->msix_entries[vector].entry = vector; if (pci_enable_msix(udev->pdev, udev->msix_entries, IGBUIO_NUM_MSI_VECTORS) == 0) {
udev->mode = RTE_INTR_MODE_MSIX;
}
else {
pci_disable_msix(udev->pdev);
printk(KERN_INFO "fail to enable pci msix, or not enough msix entries\n");
}
}
switch (udev->mode) {
case RTE_INTR_MODE_MSIX:
udev->info.irq_flags = 0;
udev->info.irq = udev->msix_entries[0].vector;
break;
case RTE_INTR_MODE_MSI:
break;
case RTE_INTR_MODE_LEGACY:
udev->info.irq_flags = IRQF_SHARED;
udev->info.irq = dev->irq;
break;
default:
break;
} pci_set_drvdata(dev, udev);
igbuio_pci_irqcontrol(&udev->info, 0); if (sysfs_create_group(&dev->dev.kobj, &dev_attr_grp))
goto fail_release_iomem; /* register uio driver */
if (uio_register_device(&dev->dev, &udev->info))
goto fail_release_iomem; printk(KERN_INFO "uio device registered with irq %lx\n", udev->info.irq); return 0; fail_release_iomem:
sysfs_remove_group(&dev->dev.kobj, &dev_attr_grp);
igbuio_pci_release_iomem(&udev->info);
if (udev->mode == RTE_INTR_MODE_MSIX)
pci_disable_msix(udev->pdev);
pci_release_regions(dev);
fail_disable:
pci_disable_device(dev);
fail_free:
kfree(udev); return -ENODEV;
}

代码经过整理后,对比上面简单的uio驱动实现,dpdk的uio实现也是首先初始化一个pci_driver结构体,在igbuio_pci_init_module()函数中直接调用linux提供的pci注册API,pci_register_driver(&igbuio_pci_driver),接着便跳到igbuio_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)函数中,这个函数的功能就是类似于上面例子中内核态代码,rte_uio_pci_dev结构体是dpdk自己封装的,如下:

//在igb_uio自己封装的
struct rte_uio_pci_dev {
struct uio_info info;
struct pci_dev *pdev;
spinlock_t lock; /* spinlock for accessing PCI config space or msix data in multi tasks/isr */
enum igbuio_intr_mode mode;
struct msix_entry \
msix_entries[IGBUIO_NUM_MSI_VECTORS]; /* pointer to the msix vectors to be allocated later */
};

可以看到,里面有uio_info这个结构体,从igbuio_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)函数代码中可以看到,主要是在填充uio_info结构体的信息,并且围绕的也是pci设备的物理地址及大小,最后调用linux提供的uio注册接口uio_register_device(&dev->dev, &udev->info),完成整个uio注册。

Linux 设备驱动之 UIO 机制的更多相关文章

  1. Linux 设备驱动之 UIO 机制(基本概念)

    一个设备驱动的主要任务有两个: 1. 存取设备的内存 2. 处理设备产生的中断 对于第一个任务.UIO 核心实现了mmap()能够处理物理内存(physical memory),逻辑内存(logica ...

  2. Linux设备驱动之semaphore机制【转】

    转自:http://blog.csdn.net/xiao229404041/article/details/7031776 Linux设备驱动之semaphore机制在Linux系统中,信号号是一种重 ...

  3. linux设备驱动编写_tasklet机制

    在编写设备驱动时, tasklet 机制是一种比较常见的机制,通常用于减少中断处理的时间,将本应该是在中断服务程序中完成的任务转化成软中断完成. 为了最大程度的避免中断处理时间过长而导致中断丢失,有时 ...

  4. linux设备驱动编写_tasklet机制(转)

    在编写设备驱动时, tasklet 机制是一种比较常见的机制,通常用于减少中断处理的时间,将本应该是在中断服务程序中完成的任务转化成软中断完成. 为了最大程度的避免中断处理时间过长而导致中断丢失,有时 ...

  5. 【Linux高级驱动】linux设备驱动模型之平台设备驱动机制

    [1:引言: linux字符设备驱动的基本编程流程] 1.实现模块加载函数  a.申请主设备号    register_chrdev(major,name,file_operations);  b.创 ...

  6. linux设备驱动概述,王明学learn

    linux设备驱动学习-1 本章节主要学习有操作系统的设备驱动和无操作系统设备驱动的区别,以及对操作系统和设备驱动关系的认识. 一.设备驱动的作用 对设备驱动最通俗的解释就是“驱使硬件设备行动” .设 ...

  7. linux设备驱动归纳总结(十二):简单的数码相框【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-116926.html linux设备驱动归纳总结(十二):简单的数码相框 xxxxxxxxxxxxxx ...

  8. linux设备驱动归纳总结(九):1.platform总线的设备和驱动【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-111745.html linux设备驱动归纳总结(九):1.platform总线的设备和驱动 xxxx ...

  9. linux设备驱动归纳总结(八):1.总线、设备和驱动【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-109733.html linux设备驱动归纳总结(八):1.总线.设备和驱动 xxxxxxxxxxxx ...

随机推荐

  1. Jmeter--CSV Data Set Config 参数化配置

    博客首页:http://www.cnblogs.com/fqfanqi/ 设置界面如下: Filename:参数文件名,一般是.csv和.txt文件.绝对路径和相对路径都可以,为了便于脚本迁移,建议使 ...

  2. Powershell Get-FileHash

    File Hash (Get-FileHash C:\fso\myfile.txt).hash Get-FileHash C:\Users\Andris\Downloads\Contoso8_1_EN ...

  3. 第19章—后端分页(PageHelper)

    spring boot 系列学习记录:http://www.cnblogs.com/jinxiaohang/p/8111057.html 码云源码地址:https://gitee.com/jinxia ...

  4. Cookie 入门

    位于 javax.servlet.http 包下 1. HTTP 协议与 Cookie 关于 Cookie Cookie 是 HTTP 协议制定的!先由服务器保存 Cookie 到浏览器, 在下次浏览 ...

  5. LAMP兄弟连 视频教程集

    电驴的资源:http://www.verycd.com/topics/2843130/?ref=msg

  6. Linux network namespace源码分析

    一.network namespace的创建 在对iproute2的源码进行分析后,我们可以知道,当我们调用命令`ip netns add ns1`时,本质上就是调用`unshare(CLONE_NE ...

  7. linux c编程:互斥锁

    们常说互斥锁保护临界区,实际上是说保护临界区中被多个线程或进程共享的数据.互斥锁保证任何时刻只有一个线程在执行其中的代码. 互斥锁具有以下特点: ·原子性:把一个互斥锁定义为一个原子操作,这意味着操作 ...

  8. 添加git忽略文件

    把之前的文件添加作为忽略文件 先把本地缓存删除(改变成未track状态),然后再提交git rm -r --cached .git add .git commit -m 'commit log inf ...

  9. mysql 建立表之间关系 一对一 练习2

    创建db5数据库 create database db5 charset=utf8; use db5; 例二:一个管理员唯一对应一个用户 用户表: id user password 1 egon xx ...

  10. 003-主流区块链技术特点及Hyperledger Fabric V1.0版本特点

    一.Hyperledger fabric V1.0 架构 1.逻辑架构: 2.区块链网络 3.运行时架构 二.架构总结 1.架构要点 分拆Peer的功能,将Blockchain的数据维护和共识服务进行 ...