Description

An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
The array is [1 3 -1 -3 5 3 6 7], and k is 3.

Window position Minimum value Maximum value
[1  3  -1] -3  5  3  6  7  -1 3
 1 [3  -1  -3] 5  3  6  7  -3 3
 1  3 [-1  -3  5] 3  6  7  -3 5
 1  3  -1 [-3  5  3] 6  7  -3 5
 1  3  -1  -3 [5  3  6] 7  3 6
 1  3  -1  -3  5 [3  6  7] 3 7

Your task is to determine the maximum and minimum values in the sliding window at each position.

Input

The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

Output

There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values. 

Sample Input

8 3
1 3 -1 -3 5 3 6 7

Sample Output

-1 -3 -3 -3 3 3
3 3 5 5 6 7

Source

 
题意 :给定长n的数列,问长为k的区间在数列中所有情况的最小值和最大值。
思路:学长教导的RMQ解法,ST版实质是DP,比起不太懂DP的以前,现在感觉好理解多了。此外感觉可以使用线段树解。
注意先打log的表。
 #include <stdio.h>
#include <algorithm>
//#define LOG[i] = (i & (i - 1)) ? LOG[i - 1] : LOG[i - 1] + 1
#define MAXX 1234567
#include <vector>
using namespace std; int a[MAXX];
int dp1[MAXX][];
int LOG[MAXX]; void init(int n)
{
LOG[] = ;
for(int i=; i<=n; i++)
LOG[i]=(i&(i-))?LOG[i-]:LOG[i-]+;
} int ST(int l, int r, int i)
{
int k=LOG[r-l+];
if(i==)
return max(dp1[l][k],dp1[r-(<<k)+][k]);
if(i==)
return min(dp1[l][k],dp1[r-(<<k)+][k]);
}
int main()
{
int n, k; while(~scanf("%d%d",&n, &k))
{
int i, j;
init(n);
for(i=; i<=n; i++)
{
scanf("%d", &a[i]);
dp1[i][]=a[i];
}
for(j=; j<=; j++)
{
for(i=; i<=n; i++)
{
if(i+(<<j)->n)
break;
dp1[i][j]=min(dp1[i][j-], dp1[i+(<<(j-))][j-]);
}
}
for(i=; i<=n-k+; i++)
{
if(i!=)
printf(" ");
printf("%d", ST(i,i+k-,));
}
////// for(i=; i<=n; i++)
{
dp1[i][]=a[i];
for(j=; j<=; j++)
dp1[i][j]=;
}
for(j=; j<=; j++)
{
for(i=; i<=n; i++)
{
if(i+(<<j)->n)
break;
dp1[i][j]=max(dp1[i][j-], dp1[i+(<<(j-))][j-]);
}
}
printf("\n");
for(i=; i<=n-k+; i++)
{
if(i!=)
printf(" ");
printf("%d", ST(i,i+k-,));
}
printf("\n");
}
}

POJ 2823 Sliding Window ST RMQ的更多相关文章

  1. POJ 2823 Sliding Window + 单调队列

    一.概念介绍 1. 双端队列 双端队列是一种线性表,是一种特殊的队列,遵守先进先出的原则.双端队列支持以下4种操作: (1)   从队首删除 (2)   从队尾删除 (3)   从队尾插入 (4)   ...

  2. POJ 2823 Sliding Window 题解

    POJ 2823 Sliding  Window 题解 Description An array of size n ≤ 106 is given to you. There is a sliding ...

  3. 洛谷P1886 滑动窗口(POJ.2823 Sliding Window)(区间最值)

    To 洛谷.1886 滑动窗口 To POJ.2823 Sliding Window 题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每 ...

  4. POJ 题目2823 Sliding Window(RMQ,固定区间长度)

    Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 46507   Accepted: 13442 ...

  5. poj 2823 Sliding Window (单调队列入门)

    /***************************************************************** 题目: Sliding Window(poj 2823) 链接: ...

  6. POJ 2823 Sliding Window(单调队列入门题)

      Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 67218   Accepted: 190 ...

  7. POJ 2823 Sliding Window & Luogu P1886 滑动窗口

    Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 66613   Accepted: 18914 ...

  8. POJ 2823 Sliding Window

    Sliding Window Time Limit: 12000MSMemory Limit: 65536K Case Time Limit: 5000MS Description An array ...

  9. POJ - 2823 Sliding Window (滑动窗口入门)

    An array of size n ≤ 10 6 is given to you. There is a sliding window of size kwhich is moving from t ...

随机推荐

  1. forward_list

    一.特性 单向链表,只支持单向顺序访问(不支持快速随机访问),是C++11标准新增的类型 可类比于数据结构——单(向)链表 1. 没有size操作 forward_list为了追求性能,省去了size ...

  2. Python-列表练习

    1.使用列表生成式生成如下列表:[1,9,25,49,81] s = [i**2 for i in range(1,10)if i%2==1] print(s) 2.输入一个由英文单词组成的字符串(分 ...

  3. ArrayList中modCount的作用

    在ArrayList中有个成员变量modCount,继承于AbstractList. 这个成员变量记录着集合的修改次数,也就每次add或者remove它的值都会加1.这到底有什么用呢? 先看下面一段测 ...

  4. 寒假作业end

    开始写博客的个人体会 自己打的链表过不了,果然,心存侥幸是不行的,被揪出来也不错,很感谢畅畅酱. 学术诚信的重要性 爱因斯坦说过:"大多数人说是才智造就了伟大的科学家,他们错了,是人格.&q ...

  5. 【MVC4升级到MVC5】ASP.Net MVC 4项目升级MVC 5的方法

    1.备份你的项目 2.从Web API升级到Web API 2,修改global.asax,将 ? 1 WebApiConfig.Register(GlobalConfiguration.Config ...

  6. 3dContactPointAnnotationTool开发日志(八)

      今天上午去实验室打算把项目从github上pull下来发现貌似不行,然后强行pull下来后项目变得乱七八糟了,有的组件都不知道去哪里了.去github上看了看发现上面day6和day7都没有,特别 ...

  7. git工具SourceTree工作流

    分支模型 master 用来最终上线的分支,最终发布版本,整个项目中有且只有一个 develop 项目中用来开发的分支,原则上项目中有且只有一个,develop 分支下面的分支是经常变化的,会创建新的 ...

  8. VS升级后的配置问题

    当vs升级到更新的版本后,运行原来无误的程序会出现一系列问题. 例如:打不开iostream文件,lib文件,系统找不到文件等等 出现这类问题的原因是,编译环境的include path和librar ...

  9. C语言100例02 PHP版(练习)

    问题: 企业发放的奖金根据利润提成. 利润(I)低于或等于10万元时,奖金可提10%: 利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可提成7.5%: 20万到 ...

  10. 【bzoj1616】[Usaco2008 Mar]Cow Travelling游荡的奶牛 bfs

    题目描述 奶牛们在被划分成N行M列(2 <= N <= 100; 2 <= M <= 100)的草地上游走,试图找到整块草地中最美味的牧草.Farmer John在某个时刻看见 ...