https://www.lydsy.com/JudgeOnline/problem.php?id=3771

大意:给n把不同价值的斧子,从中选一把/两把/三把,所构成的每种价值和的可能情况有多少。

生成函数,指数为价值,系数即为可能情况数。

但是直接FFT乘会有两把/三把斧子拿的同一个的情况。

于是我们多存两个数组,分别记录两把/三把同时拿一把的生成函数,之后就容斥一下就行啦!

(注意拿的顺序不同也算是同一种情况,不要忘记除下去)

#include<cstdio>
#include<cctype>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long ll;
typedef long double dl;
const dl pi=acos(-1.0);
const int N=3e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct complex{//定义复数
dl x,y;
complex(dl xx=0.0,dl yy=0.0){
x=xx;y=yy;
}
complex operator +(const complex &b)const{
return complex(x+b.x,y+b.y);
}
complex operator -(const complex &b)const{
return complex(x-b.x,y-b.y);
}
complex operator *(const complex &b)const{
return complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
};
void FFT(complex a[],int n,int on){
for(int i=,j=n>>;i<n-;i++){
if(i<j)swap(a[i],a[j]);
int k=n>>;
while(j>=k){j-=k;k>>=;}
if(j<k)j+=k;
}
for(int i=;i<=n;i<<=){
complex res(cos(-on**pi/i),sin(-on**pi/i));
for(int j=;j<n;j+=i){
complex w(,);
for(int k=j;k<j+i/;k++){
complex u=a[k],t=w*a[k+i/];
a[k]=u+t;
a[k+i/]=u-t;
w=w*res;
}
}
}
if(on==-)
for(int i=;i<n;i++)a[i].x/=n;
}
int n,m;
complex a[N],b[N],c[N],d[N];
int main(){
n=read();
for(int i=;i<=n;i++){
int w=read();m=max(m,w);
a[w].x=;
b[w*].x=;
c[w*].x=;
}
m=m*;
int nn=;
while(nn<m)nn<<=;
FFT(a,nn,);FFT(b,nn,);FFT(c,nn,);
for(int i=;i<nn;i++){
complex t1(1.0/2.0,);
complex t2(3.0,);
complex t3(2.0,);
complex t4(1.0/6.0,);
d[i]=d[i]+a[i];
d[i]=d[i]+(a[i]*a[i]-b[i])*t1;
d[i]=d[i]+(a[i]*a[i]*a[i]-t2*a[i]*b[i]+t3*c[i])*t4;
}
FFT(d,nn,-);
for(int i=;i<m;i++){
int w=d[i].x+0.5;
if(w)printf("%d %d\n",i,w);
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3771:Triple——题解的更多相关文章

  1. BZOJ3771 Triple 【NTT + 容斥】

    题目链接 BZOJ3771 题解 做水题放松一下 先构造\(A_i\)为\(x\)指数的生成函数\(A(x)\) 再构造\(2A_i\)为指数的生成函数\(B(x)\) 再构造\(3A_i\)为指数的 ...

  2. BZOJ3771: Triple

    额我不是来发题解的,只是非常郁闷= =,这题的答案最大是1.2e9/6左右,所以用ntt的话要在模意义下除以6,不能最后除,否则刚好爆掉= = #include<bits/stdc++.h> ...

  3. BZOJ3771 Triple(FFT+容斥原理)

    思路比较直观.设A(x)=Σxai.先把只选一种的统计进去.然后考虑选两种,这个直接A(x)自己卷起来就好了,要去掉选同一种的情况然后除以2.现在得到了选两种的每种权值的方案数,再把这个卷上A(x). ...

  4. 2018.12.31 bzoj3771: Triple(生成函数+fft+容斥原理)

    传送门 生成函数经典题. 题意简述:给出nnn个数,可以从中选1/2/31/2/31/2/3个,问所有可能的和对应的方案数. 思路: 令A(x),B(x),C(x)A(x),B(x),C(x)A(x) ...

  5. BZOJ3771: Triple【生成函数】

    Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:" ...

  6. bzoj3771: Triple(容斥+生成函数+FFT)

    传送门 咳咳忘了容斥了-- 设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一 ...

  7. $FFT/NTT/FWT$题单&简要题解

    打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include < ...

  8. $\text {FWT}$学习笔记

    \(\text {FWT}\) 学习笔记 正常项的\(\text {FWT}\) 在\(\text {OI}\)中,我们经常会碰到这种问题: 给出一个长度为\(n\)的序列\(a_{1,2,...,n ...

  9. 【BZOJ3771】Triple(生成函数,多项式运算)

    [BZOJ3771]Triple(生成函数,多项式运算) 题面 有\(n\)个价值\(w\)不同的物品 可以任意选择\(1,2,3\)个组合在一起 输出能够组成的所有价值以及方案数. \(n,w< ...

随机推荐

  1. linux下实现ssh无密码登录访问

    在192.168.9.51机器上 1)运行:#ssh-keygen -t rsa 2)然后拍两下回车(均选择默认) 3)运行: #ssh-copy-id -i /root/.ssh/id_rsa.pu ...

  2. 网易七鱼 Android 高性能日志写入方案

    本文来自网易云社区 作者:网易七鱼 Android 开发团队 前言 网易七鱼作为一款企业级智能客服系统,对于系统稳定性要求很高,不过难保用户在使用中不会出现问题,而 Android SDK 安装在用户 ...

  3. Maya Api笔记 - How polygons are handled internally

    为加深记忆和理解Maya的Polygon,尝试利用空闲时间翻译Maya Api文档相关章节. How polygons are handled internally - 多边形是如何在内部处理的

  4. 【token接口】-jmeter

    token 接口 3步骤 1.登录接口 2.提取登录接口的token 3.http 信息管理头   把提取的cookie传入  就可以了

  5. FastJson 序列化与反序列化一些说明

    最近所属的组需要对接一些征信结构,就涉及到很多中的数据格式,而springmvc中使用的是jackson作为@ResponseBody的依赖jar 但是个人认为fastkson的性能要高于jackso ...

  6. BOM / URL编码解码 / 浏览器存储

    BOM 浏览器对象模型 BOM(Browser Object Model) 是指浏览器对象模型,是用于描述这种对象与对象之间层次关系的模型,浏览器对象模型提供了独立于内容的.可以与浏览器窗口进行互动的 ...

  7. 十分钟掌握pandas(pandas官方文档翻译)

    十分钟掌握pandas 文档版本:0.20.3 这是一个对pandas简短的介绍,适合新用户.你可以在Cookbook中查看更详细的内容. 通常,我们要像下面一样导入一些包. In [1]: impo ...

  8. 如何在etherscan提交代币官方信息

    https://ethlinkersupport.zendesk.com/hc/zh-cn/articles/360001334992-%E5%A6%82%E4%BD%95%E5%9C%A8ether ...

  9. 如何让thinkpad X1C 用U盘 安装上专业版win10

    1 BIOS内置了文件 会导致win10 iso默认装家庭版 2 给iso 的resouse 目录中增加文件ei.cfg 3 内容如下 [EditionID]Professional[Channel] ...

  10. nodejs笔记--模块篇(三)

    文件模块访问方式通过require('/文件名.后缀')    require('./文件名.后缀')    requrie('../文件名.后缀') 去访问,文件后缀可以省略:以"/&qu ...