[洛谷P2408]不同子串个数
题目大意:给你一个字符串,求其中本质不同的字串的个数
题解:同[洛谷P4070][SDOI2016]生成魔咒,只要最后再输出就行了
卡点:无
C++ Code:
#include <cstdio>
#include <map>
#define maxn 100010
long long ans;
namespace SAM {
#define N (maxn << 1)
#define root 1
int R[N], fail[N];
int nxt[N][26];
int lst = root, idx = root;
void append(char __ch) {
int ch = __ch - 'a';
int p = lst, np = lst = ++idx;
R[np] = R[p] + 1;
for (; p && !nxt[p][ch]; p = fail[p]) nxt[p][ch] = np;
if (!p) fail[np] = root;
else {
int q = nxt[p][ch];
if (R[p] + 1 == R[q]) fail[np] = q;
else {
int nq = ++idx;
std::copy(nxt[q], nxt[q] + 26, nxt[nq]);
fail[nq] = fail[q], R[nq] = R[p] + 1, fail[np] = fail[q] = nq;
for (; p && nxt[p][ch] && nxt[p][ch] == q; p = fail[p]) nxt[p][ch] = nq;
}
}
}
int query() {
return R[lst] - R[fail[lst]];
}
#undef root
#undef N
} #define maxn 100010
int n;
char s[maxn];
int main() {
scanf("%d%s", &n, s);
for (int i = 0; i < n; i++) {
SAM::append(s[i]);
ans += SAM::query();
}
printf("%lld\n", ans);
return 0;
}
[洛谷P2408]不同子串个数的更多相关文章
- 洛谷P2408 不同子串个数 后缀数组 + Height数组
## 题目描述: 给你一个长为 $N$ $(N<=10^5)$ 的字符串,求不同的子串的个数我们定义两个子串不同,当且仅当有这两个子串长度不一样 或者长度一样且有任意一位不一样.子串的定义:原字 ...
- 【文文殿下】洛谷P2408 不同子串个数
题目链接https://www.luogu.org/problemnew/show/P2408 SAM裸题,大力求就行了 #include<cstdio> #include<cstr ...
- Luogu P2408 不同子串个数【SAM】
P2408 不同子串个数 计算一个字符串的不同子串个数 两种方法,一种是\(dp\)出来\(SAM\)从起点开始的路径数量 另一种方法就是计算每个点的\(len[i]-len[link[i]]\)这个 ...
- 洛谷P2408 不同字串个数 [后缀数组]
题目传送门 不同字串个数 题目背景 因为NOI被虐傻了,蒟蒻的YJQ准备来学习一下字符串,于是它碰到了这样一道题: 题目描述 给你一个长为N的字符串,求不同的子串的个数 我们定义两个子串不同,当且仅当 ...
- 【题解】洛谷P2679 [NOIP2015TG] 子串(DP+滚动数组)
次元传送门:洛谷P2679 思路 蒟蒻一开始并没有思路而去看了题解 我们发现对于两个字串的位置 我们只需要管他们匹配成功或者匹配失败即可 f[i][j][k] 记录当前 a[i]不论等不等于b[j] ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
- 【洛谷 P2408】 不同子串个数(后缀自动机)
题目链接 裸体就是身体. 建出\(SAM\),\(DAG\)上跑\(DP\),\(f[u]=1+\sum_{(u,v)\in DAG}f[v]\) 答案为\(f[1]-1\)(因为根节点没有字符) # ...
- 洛谷 P1026 统计单词个数 (分组+子串预处理)(分组型dp再次总结)
一看完这道题就知道是划分型dp 有两个点要注意 (1)怎么预处理子串. 表示以i为开头,结尾在j之前(含),有没有子串,有就1,没有就0 (2)dp的过程 这种分成k组最优的题目已经高度模板化了,我总 ...
- luogu P2408 不同子串个数
考虑反向操作,去计算有多少组相同的子串,对于一组大小为k的极大相同子串的集合,ans-=k-1. 为了避免重复计算,需要一种有效的,有顺序的记录方案. 比如说,对于每一个相同组,按其起始点所在的位置排 ...
随机推荐
- P2351 [SDOi2012]吊灯
P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351 题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...
- Redis系列八 使用Jedis
使用Jedis jar操作Redis 1.配置redis.conf文件,修改 2.建java工程,加入 jedis jar包 3.代码示例: package com.ntjr.redis; impor ...
- Ruby 基础教程 1-1
1.指定编码方式 第一种 在代码文件首行通过 #encoding:GBK的方式 第二种 ruby -E UTF-8 文件名称 第三种 irb -E UTF-8 2 ...
- (C#)原型模式—深复制与浅复制
1.原型模式 用原型实例指定创建对象的实例,并且通过拷贝这些原型创建新的对象. *原型模式隐藏了创建对象的细节,提高了性能. *浅复制:被复制对象的所有变量都含有与原来对象相同的值,而且所有对其他对象 ...
- (原)HUD绘画贴图解析
@小道:临时存放 1\主过程 说明: a\调用DrawTextureSimple时,会将UTexure封装成CavarsItem, 若是正交投射函数执行双,最后CavarsItem.Dra ...
- KVM存储虚拟化---玩转openstack
KVM 的存储虚拟化是通过存储池(Storage Pool)和卷(Volume)来管理的. Storage Pool 是宿主机上可以看到的一片存储空间,可以是多种类型,后面会详细讨论.Volume 是 ...
- 【转】Hbuilder MUI 页面刷新及页面传值问题
文章来源:http://www.111cn.net/sys/CentOS/67213.htm 一.页面刷新问题 1.父页面A跳转到子页面B,B页面修改数据后再跳回A页面,刷新A页面数据 (1).父页面 ...
- 在linux下PHP和Mysql环境搞事情
研发部门同事开发了一个接口管理辅助工具Shepherd,要求搭建在内网环境中,遇到点小问题记一下. 将开发的文件上传只web目录下,更改数据库ip,可以正常打开 登陆用户信息,此时需要连接数据库来验证 ...
- Mr. Frog’s Game(模拟连连看)
Description One day, Mr. Frog is playing Link Game (Lian Lian Kan in Chinese). In this game, if you ...
- Easy Summation
Description You are encountered with a traditional problem concerning the sums of powers. Given two ...