data augmentation 几种方法总结

在深度学习中,有的时候训练集不够多,或者某一类数据较少,或者为了防止过拟合,让模型更加鲁棒性,data augmentation是一个不错的选择。

常见方法

Color Jittering:对颜色的数据增强:图像亮度、饱和度、对比度变化(此处对色彩抖动的理解不知是否得当);

PCA Jittering:首先按照RGB三个颜色通道计算均值和标准差,再在整个训练集上计算协方差矩阵,进行特征分解,得到特征向量和特征值,用来做PCA Jittering;

Random Scale:尺度变换;

Random Crop:采用随机图像差值方式,对图像进行裁剪、缩放;包括Scale Jittering方法(VGG及ResNet模型使用)或者尺度和长宽比增强变换;

Horizontal/Vertical Flip:水平/垂直翻转;

Shift:平移变换;

Rotation/Reflection:旋转/仿射变换;

Noise:高斯噪声、模糊处理;

Label shuffle:类别不平衡数据的增广,参见海康威视ILSVRC2016的report;另外,文中提出了一种Supervised Data Augmentation方法,有兴趣的朋友的可以动手实验下。

部分方法的具体实现

# -*- coding:utf-8 -*-
"""数据增强
1. 翻转变换 flip
2. 随机修剪 random crop
3. 色彩抖动 color jittering
4. 平移变换 shift
5. 尺度变换 scale
6. 对比度变换 contrast
7. 噪声扰动 noise
8. 旋转变换/反射变换 Rotation/reflection
""" from PIL import Image, ImageEnhance, ImageOps, ImageFile
import numpy as np
import random
import threading, os, time
import logging logger = logging.getLogger(__name__)
ImageFile.LOAD_TRUNCATED_IMAGES = True class DataAugmentation:
"""
包含数据增强的八种方式
""" def __init__(self):
pass @staticmethod
def openImage(image):
return Image.open(image, mode="r") @staticmethod
def randomRotation(image, mode=Image.BICUBIC):
"""
对图像进行随机任意角度(0~360度)旋转
:param mode 邻近插值,双线性插值,双三次B样条插值(default)
:param image PIL的图像image
:return: 旋转转之后的图像
"""
random_angle = np.random.randint(1, 360)
return image.rotate(random_angle, mode) @staticmethod
def randomCrop(image):
"""
对图像随意剪切,考虑到图像大小范围(68,68),使用一个一个大于(36*36)的窗口进行截图
:param image: PIL的图像image
:return: 剪切之后的图像 """
image_width = image.size[0]
image_height = image.size[1]
crop_win_size = np.random.randint(40, 68)
random_region = (
(image_width - crop_win_size) >> 1, (image_height - crop_win_size) >> 1, (image_width + crop_win_size) >> 1,
(image_height + crop_win_size) >> 1)
return image.crop(random_region) @staticmethod
def randomColor(image):
"""
对图像进行颜色抖动
:param image: PIL的图像image
:return: 有颜色色差的图像image
"""
random_factor = np.random.randint(0, 31) / 10. # 随机因子
color_image = ImageEnhance.Color(image).enhance(random_factor) # 调整图像的饱和度
random_factor = np.random.randint(10, 21) / 10. # 随机因子
brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor) # 调整图像的亮度
random_factor = np.random.randint(10, 21) / 10. # 随机因1子
contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor) # 调整图像对比度
random_factor = np.random.randint(0, 31) / 10. # 随机因子
return ImageEnhance.Sharpness(contrast_image).enhance(random_factor) # 调整图像锐度 @staticmethod
def randomGaussian(image, mean=0.2, sigma=0.3):
"""
对图像进行高斯噪声处理
:param image:
:return:
""" def gaussianNoisy(im, mean=0.2, sigma=0.3):
"""
对图像做高斯噪音处理
:param im: 单通道图像
:param mean: 偏移量
:param sigma: 标准差
:return:
"""
for _i in range(len(im)):
im[_i] += random.gauss(mean, sigma)
return im # 将图像转化成数组
img = np.asarray(image)
img.flags.writeable = True # 将数组改为读写模式
width, height = img.shape[:2]
img_r = gaussianNoisy(img[:, :, 0].flatten(), mean, sigma)
img_g = gaussianNoisy(img[:, :, 1].flatten(), mean, sigma)
img_b = gaussianNoisy(img[:, :, 2].flatten(), mean, sigma)
img[:, :, 0] = img_r.reshape([width, height])
img[:, :, 1] = img_g.reshape([width, height])
img[:, :, 2] = img_b.reshape([width, height])
return Image.fromarray(np.uint8(img)) @staticmethod
def saveImage(image, path):
image.save(path) def makeDir(path):
try:
if not os.path.exists(path):
if not os.path.isfile(path):
# os.mkdir(path)
os.makedirs(path)
return 0
else:
return 1
except Exception, e:
print str(e)
return -2 def imageOps(func_name, image, des_path, file_name, times=5):
funcMap = {"randomRotation": DataAugmentation.randomRotation,
"randomCrop": DataAugmentation.randomCrop,
"randomColor": DataAugmentation.randomColor,
"randomGaussian": DataAugmentation.randomGaussian
}
if funcMap.get(func_name) is None:
logger.error("%s is not exist", func_name)
return -1 for _i in range(0, times, 1):
new_image = funcMap[func_name](image)
DataAugmentation.saveImage(new_image, os.path.join(des_path, func_name + str(_i) + file_name)) opsList = {"randomRotation", "randomCrop", "randomColor", "randomGaussian"} def threadOPS(path, new_path):
"""
多线程处理事务
:param src_path: 资源文件
:param des_path: 目的地文件
:return:
"""
if os.path.isdir(path):
img_names = os.listdir(path)
else:
img_names = [path]
for img_name in img_names:
print img_name
tmp_img_name = os.path.join(path, img_name)
if os.path.isdir(tmp_img_name):
if makeDir(os.path.join(new_path, img_name)) != -1:
threadOPS(tmp_img_name, os.path.join(new_path, img_name))
else:
print 'create new dir failure'
return -1
# os.removedirs(tmp_img_name)
elif tmp_img_name.split('.')[1] != "DS_Store":
# 读取文件并进行操作
image = DataAugmentation.openImage(tmp_img_name)
threadImage = [0] * 5
_index = 0
for ops_name in opsList:
threadImage[_index] = threading.Thread(target=imageOps,
args=(ops_name, image, new_path, img_name,))
threadImage[_index].start()
_index += 1
time.sleep(0.2) if __name__ == '__main__':
threadOPS("/home/pic-image/train/12306train",
"/home/pic-image/train/12306train3")

参考文献

深度学习之图像的数据增强

知乎

data augmentation 总结的更多相关文章

  1. 深度学习中的Data Augmentation方法(转)基于keras

    在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...

  2. 常见的数据扩充(data augmentation)方法

    G~L~M~R~S 一.data augmentation 常见的数据扩充(data augmentation)方法:文中图片均来自吴恩达教授的deeplearning.ai课程 1.Mirrorin ...

  3. (转)AutoML for Data Augmentation

    AutoML for Data Augmentation 2019-04-01 09:26:19 This blog is copied from: https://blog.insightdatas ...

  4. 图像数据增强 (Data Augmentation in Computer Vision)

    1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟 ...

  5. Keras Data augmentation(数据扩充)

    在深度学习中,我们经常需要用到一些技巧(比如将图片进行旋转,翻转等)来进行data augmentation, 来减少过拟合. 在本文中,我们将主要介绍如何用深度学习框架keras来自动的进行data ...

  6. keras对图像数据进行增强 | keras data augmentation

    本文首发于个人博客https://kezunlin.me/post/8db507ff/,欢迎阅读最新内容! keras data augmentation Guide code # import th ...

  7. paper 147:Deep Learning -- Face Data Augmentation(一)

    1. 在深度学习中,当数据量不够大时候,常常采用下面4中方法:  (1)人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data ...

  8. 【48】数据扩充(Data augmentation)

    数据扩充(Data augmentation) 大部分的计算机视觉任务使用很多的数据,所以数据扩充是经常使用的一种技巧来提高计算机视觉系统的表现.我认为计算机视觉是一个相当复杂的工作,你需要输入图像的 ...

  9. Regularizing Deep Networks with Semantic Data Augmentation

    目录 概 主要内容 代码 Wang Y., Huang G., Song S., Pan X., Xia Y. and Wu C. Regularizing Deep Networks with Se ...

随机推荐

  1. 如何利用jQuery检查浏览器是否是IE6-8

    $.support.leadingWhitespace是IE特有的属性,用来检查浏览器是否是IE6-8

  2. 170223、Tomcat部署时war和war exploded区别以及平时踩得坑

    war和war exploded的区别 在使用IDEA开发项目的时候,部署Tomcat的时候通常会出现下边的情况: 是选择war还是war exploded 这里首先看一下他们两个的区别: war模式 ...

  3. 170120、java 如何在pdf中生成表格

    1.目标 在pdf中生成一个可变表头的表格,并向其中填充数据.通过泛型动态的生成表头,通过反射动态获取实体类(我这里是User)的get方法动态获得数据,从而达到动态生成表格. 每天生成一个文件夹存储 ...

  4. phpstorm 9.0最新 注册码

    phpstorm注册码: User Name:newasp 01.License Key: ===== LICENSE BEGIN ===== 14617-12042010 00001xrVkhnPu ...

  5. What is Grammar?

    What is Grammar? And why grammar is your friend… Grammar(noun): the structure and system of a langua ...

  6. 小团队交流为什么 :wq! :wq 二者结果一致?

    w 答案: :q 执行失败--->提示-已经修改,但是尚未保存,+!强制不保存退出 :w 保存

  7. Spring Mvc4 新特性(一)

    前言 Spring Framework的Web层,由spring-web,spring-webmvc,spring-websocket和spring-webmvc-portlet模块组成. 很多人刚学 ...

  8. Java 面向对象之 static 关键字

    static 特点 static 是一个修饰符, 用于修饰成员 static 修饰的成员被所有的对象所共享 static 优先于对象存在, 因为 static 的成员随着类的加载就已经存在了 stat ...

  9. Java String.split() 使用注意

    java的split()方法用于字符串中根据指定的字符进行分割,得到的是一个字符串数组 public String[] split(String regex) Splits this string a ...

  10. python学习之路-第八天-文件IO、储存器模块

    文件IO.储存器模块 文件IO 代码示例: # -*- coding:utf-8 -*- #! /usr/bin/python # filename:using_file.py poem = '''\ ...