【题意】给定正边权有向图,车油量上限C,每个点可以花费pi加油至min(C,ci),走一条边油-1,T次询问s点出发带钱q,旅行路程至少为d的最多剩余钱数。

n<=100,m<=1000,C<=10^5,q<=n^2

【算法】动态规划

【题解】官方题解

虽然不是DAG,但是由于q很小的特点,将q加入状态就满足DP的无后效性了。

令f[i][q]表示当前在i点并在i点加油,加油前钱数为q的最大路程。(q<pi时,f[i][q]=0)

假设下一加油点为j,转移方程:f[i][q]=max{f[j][q-pi]+w(i,j,ci)},其中w(i,j,c)表示i点到j点,油量为c的最大路程。(ci=min(ci,C))

现在主要问题是预处理w(i,j,ci),发现每走一条边c只会减少1,符合倍增变化规则一致的特点,考虑图上倍增。

虽然不是DAG,但是c加入状态就满足DP的无后效性了。

g(i,j,k)表示i点到j点,油量为2^k的最大路程,显然g(i,j,k)=max{g(i,x,k-1)+g(x,j,k-1)},x是中转点。

对于w(i,j,ci),将ci拆分二进制,每次枚举x作为中转点后直接取倍增数组g计算答案。

【倍增的思想是很经典的,将需要的ci拆分二进制后将1的位用倍增数组堆起来。但是应用到图上每次就都需要遍历全图作为可能的中转点,最后找到最优答案。】

最后得到了f[i][q],对每个询问在f[s]上二分到第一个大于等于d的f[s][q],q就是答案。

复杂度O(n^4+n^3*log k+T*log n^2),瓶颈复杂度O(n^4)。(n^4过100……)

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
using namespace std;
int read(){
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
const int maxn=,maxm=,maxk=,inf=0x3f3f3f3f;
int n,m,C,T,tot;
int g[maxn][maxn][maxk],p[maxn],c[maxn],A[maxn],B[maxn],w[maxn][maxn],f[maxn][maxn*maxn];
void cmax(int &a,int b){if(b>a)a=b;}
int main(){
n=read();m=read();C=read();T=read();
for(int i=;i<=n;i++)for(int j=;j<=n;j++)for(int k=;k<=;k++)g[i][j][k]=-inf;
for(int i=;i<=n;i++)p[i]=read(),c[i]=min(C,read()),g[i][i][]=;
for(int i=;i<=m;i++){
int u=read(),v=read(),w=read();
g[u][v][]=w;
}
for(int k=;k<=;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int x=;x<=n;x++)cmax(g[i][j][k],g[i][x][k-]+g[x][j][k-]);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++)A[j]=-inf;A[i]=;
for(int k=;k<=;k++)if((c[i]>>k)&){
for(int j=;j<=n;j++){
B[j]=-inf;
for(int x=;x<=n;x++)cmax(B[j],A[x]+g[x][j][k]);
}
for(int j=;j<=n;j++)A[j]=B[j];
}
for(int j=;j<=n;j++)w[i][j]=A[j];
}
for(int q=;q<=n*n;q++)
for(int x=;x<=n;x++)if(q>=p[x])
for(int y=;y<=n;y++)cmax(f[x][q],f[y][q-p[x]]+w[x][y]);
while(T--){
int s=read(),q=read(),d=read();
int pl=lower_bound(f[s],f[s]+n*n+,d)-f[s];
if(pl>q)printf("-1\n");else printf("%d\n",q-pl);
}
return ;
}

【LibreOJ】#539. 「LibreOJ NOIP Round #1」旅游路线的更多相关文章

  1. LibreOJ #539. 「LibreOJ NOIP Round #1」旅游路线(倍增+二分)

    哎一开始看错题了啊T T...最近状态一直不对...最近很多傻逼题都不会写了T T 考虑距离较大肯定不能塞进状态...钱数<=n^2能够承受, 油量再塞就不行了...显然可以预处理出点i到j走c ...

  2. LOJ#539. 「LibreOJ NOIP Round #1」旅游路线

    n<=100,m<=1000的图,在此图上用油箱容量C<=1e5的车来旅行,旅行时,走一条边会耗一单伟油,在点i时,若油量<ci,则可以把油以pi的价格补到ci,pi<= ...

  3. LOJ #539. 「LibreOJ NOIP Round #1」旅游路线 倍增floyd + 思维

    考试的时候是这么想的: 求出每一个点花掉 $i$ 的花费向其他点尽可能走的最长距离,然后二分这个花费,找到第一个大于 $d$ 的就输出$.$然而,我这个记忆化搜索 $TLE$ 的很惨$.$这里讲一下正 ...

  4. 「LOJ 539」「LibreOJ NOIP Round #1」旅游路线

    description 题面较长,这里给出题目链接 solution 考虑预处理出\(f[i][j]\)表示在第\(i\)个点加满油后,从第\(i\)个点出发,至多消耗\(j\)元钱走过的最大路程,那 ...

  5. LibreOj #539. 「LibreOJ NOIP Round #1」旅游路线

    题目链接 做完这道题,我深知当一个问题复杂度过高的时候,把一些可以分离的操作都分散开,可以大幅度降低复杂度..... 发现无论有多少钱,每到一个点后扩展到的距离被限制在 \(min(C, c[i])\ ...

  6. 「LibreOJ NOIP Round #1」旅游路线

    Description T 城是一个旅游城市,具有 nnn 个景点和 mmm 条道路,所有景点编号为 1,2,...,n1,2,...,n1,2,...,n.每条道路连接这 nnn 个景区中的某两个景 ...

  7. LibreOJ #517. 「LibreOJ β Round #2」计算几何瞎暴力

    二次联通门 : LibreOJ #517. 「LibreOJ β Round #2」计算几何瞎暴力 /* LibreOJ #517. 「LibreOJ β Round #2」计算几何瞎暴力 叫做计算几 ...

  8. LibreOJ #528. 「LibreOJ β Round #4」求和

    二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...

  9. LibreOJ #527. 「LibreOJ β Round #4」框架

    二次联通门 : LibreOJ #527. 「LibreOJ β Round #4」框架 /* LibreOJ #527. 「LibreOJ β Round #4」框架 %% xxy dalao 对于 ...

随机推荐

  1. LintCode-105.复制带随机指针的链表

    复制带随机指针的链表 给出一个链表,每个节点包含一个额外增加的随机指针可以指向链表中的任何节点或空的节点. 返回一个深拷贝的链表. 挑战 可否使用O(1)的空间 标签 哈希表 链表 优步 code / ...

  2. JDK源码分析 – LinkedList

    LinkedList类的申明 public class LinkedList<E> extends AbstractSequentialList<E> implements L ...

  3. PAT L2-005 集合相似度

    https://pintia.cn/problem-sets/994805046380707840/problems/994805070149828608 给定两个整数集合,它们的相似度定义为:/.其 ...

  4. 第一章 持续集成jenkins工具使用之部署

    1.1 硬件要求 内存:至少512MB 磁盘空间:10G JDK8 最好同时安装jre 从官网https://jenkins.io/download/下载最新的war包(Generic Java Pa ...

  5. 重载和const参数

    const仅能用于在定义函数签名时,区分是为引用定义参数,还是为指针定义参数.定义基本类型type(如int等),从重载的观点来看,const int和int是相同的. const long& ...

  6. Gradle sync failed: Failed to find Build Tools revision 26.0.2的解决办法

    说明在android studio中没有 build tools 的26.0.2的版本,你确认一下,是否是这样: 点击==>android studio的菜单栏中Tools==>andro ...

  7. HSF原理

    HSF(High-speed Service Framework),高速服务框架,是阿里系主要采用的服务框架,其目的是作为桥梁联通不同的业务系统,解耦系统之间的实现依赖.其高速体现在底层的非阻塞I/O ...

  8. css的存在形式及优先级

    1. 查看源代码---在谷歌浏览器中右击-->点检查 2. CSS中style优先级,标签上的style优先,其它按照编写顺序越更新越优先,后面的会把前面的覆盖掉. 3. 如果想在其它的html ...

  9. BZOJ2152:聪聪可可——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2152 Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一 ...

  10. 洛谷 P3380 bzoj3196 Tyvj1730 【模板】二逼平衡树(树套树)

    [模板]二逼平衡树(树套树) 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 查询k在区间内的排名 查询区间内排名为k的值 修改某一位值上的数值 查询k在 ...