【Foreign】Game [博弈论][DP]
Game
Time Limit: 20 Sec Memory Limit: 512 MB
Description
从前有个游戏。游戏分为 k 轮。
给定一个由小写英文字母组成的字符串的集合 S,
在每轮游戏开始时,双方会得到一个空的字符串,
然后两人轮流在该串的末尾添加字符,并且需要保证新的字符串是 S 中某个串的前缀,直到有一方不能操作,则不能操作的一方输掉这一轮。
新的一轮由上一轮输的人先手,最后一轮赢的人获得游戏胜利。
假定双方都采取最优策略,求第一轮先手的一方能否获胜。
Input
输入包含多组数据。
每组数据的第一行包含两个整数 n,k,分别表示字符串的数量和游戏的轮数。
接下来 n 行,每行一个由小写英文字母组成的字符串。
Output
对于每组数据输出一行,若先手能获胜输出 HY wins!,否则输出 Teacher wins!
Sample Input
2 3
a
b
3 1
a
b
c
Sample Output
HY wins!
HY wins!
HINT
1 ≤ n ≤ 1e5,1 ≤ k ≤ 1e9,保证所有字符串长度不超过 1e5,数据组数不超过 10。
Solution
显然Trie上这个DP显然就是为了求:一轮中,先手是否必胜或者必败。显然,一个点如果可以走向必败点那么就可以必胜。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64;
typedef unsigned int u32; const int ONE = 1e6 + ; int n, k;
char s[ONE];
int next[ONE][], total, root = ;
int f[ONE], g[ONE]; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} void Insert()
{
scanf("%s", s + );
int u = root, n = strlen(s + );
for(int i = ; i <= n; i++)
{
int c = s[i] - 'a' + ;
if(!next[u][c]) next[u][c] = ++total;
u = next[u][c];
}
} void Dfs_f(int u)
{
if(!u) return;
int PD = ;
for(int c = ; c <= ; c++) if(next[u][c]) {PD = ; break;}
if(PD) {g[u] = ; return;} PD = ;
for(int c = ; c <= ; c++)
{
Dfs_f(next[u][c]);
if(next[u][c] && f[next[u][c]] == ) PD = ;
}
f[u] = PD;
} void Dfs_g(int u)
{
if(!u) return;
int PD = ;
for(int c = ; c <= ; c++) if(next[u][c]) {PD = ; break;}
if(PD) {g[u] = ; return;} PD = ;
for(int c = ; c <= ; c++)
{
Dfs_g(next[u][c]);
if(next[u][c] && g[next[u][c]] == ) PD = ;
}
g[u] = PD;
} int main()
{
while(scanf("%d %d", &n, &k) != EOF)
{
memset(f, , sizeof(f));
memset(g, , sizeof(g));
memset(next, , sizeof(next));
total = ;
for(int i = ; i <= n; i++)
Insert();
Dfs_f(); Dfs_g();
if(f[] == && g[] == ) printf("HY wins!\n");
else
if(f[] == )
k % == ? printf("HY wins!\n") : printf("Teacher wins!\n");
else
printf("Teacher wins!\n");
}
}
【Foreign】Game [博弈论][DP]的更多相关文章
- 2018.09.25 poj2068 Nim(博弈论+dp)
传送门 题意简述:m个石子,有两个队每队n个人循环取,每个人每次取石子有数量限制,取最后一块的输,问先手能否获胜. 博弈论+dp. 我们令f[i][j]f[i][j]f[i][j]表示当前第i个人取石 ...
- 【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp
题目描述 给出 $n$ 和 $m$ ,$m$ 次询问.每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是 ...
- 【bzoj4550】小奇的博弈 博弈论+dp
题目描述 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边 是黑色棋子,相邻的棋子颜色不同. 小奇可以移动白色棋子,提比可以移动黑色的棋子, ...
- 「模拟赛20181025」御风剑术 博弈论+DP简单优化
题目描述 Yasuo 和Riven对一排\(n\)个假人开始练习.斩杀第\(i\)个假人会得到\(c_i\)个精粹.双方轮流出招,他们在练习中互相学习,所以他们的剑术越来越强.基于对方上一次斩杀的假人 ...
- BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP
BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP Description 农夫约翰的奶牛喜欢玩硬币游戏,因此他发明了一种称为“Xoinc”的两人硬币游戏. 初始时,一个有N(5 ...
- 【CSA49F】【XSY3317】card 博弈论 DP
题目大意 不会博弈论的 yww 在和博弈论大师 yxq 玩一个游戏. 有 \(n\) 种卡牌,第 \(i\) 种卡牌有 \(b_i\) 张. yww 会先把所有 \(B=\sum_{i=1}^nb_i ...
- 湖南大学第十四届ACM程序设计新生杯(重现赛)I:II play with GG(博弈论||DP)
链接:https://ac.nowcoder.com/acm/contest/338/I 来源:牛客网 题目描述 IG won the S championship and many people a ...
- POJ2068 Nim 博弈论 dp
http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...
- bzoj 2798 [Poi2012]Bidding 博弈论+dp
题目大意 A和B两个人在玩一个游戏,这个游戏是他们轮流操作一对整数(x,y). 初始时(x,y)=(1,0),可以进行三种操作: 将(x,y)变成(1,x+y). 将(x,y)变成(2x,y). 将( ...
随机推荐
- 原生js 自定义confirm
本文参考博客园另一篇文章:https://www.cnblogs.com/hzj680539/p/5374052.html,在此感谢. 在实际开发当中,考虑到原生js组件,包括alert.confir ...
- sql sever 数据表
对视图进行操作,要在第三块区域进行添加记录操作,回车,然后会同步到所有相关数据表中. 记录不是列,而是行,不要混淆. 第二块区域是各个属性,就是说明: 第一块区域是要进行显示的字段,选中什么 显示什么 ...
- HTML5+ API 学习
HTML5+ API 模块整理 API Reference 模块 中文 模块介绍 Accelerometer 加速计 管理设备加速度传感器,用于获取设备加速度信息,包括x(屏幕水平方向).y(垂直屏幕 ...
- Hessian矩阵【转】
http://blog.sina.com.cn/s/blog_7e1ecaf30100wgfw.html 在数学中,海塞矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,一元函数就是二阶导, ...
- 【Todo】【转载】JVM学习
先参考如下这个系列<聊聊JVM> http://blog.csdn.net/column/details/talk-about-jvm.html
- 使用for循环遍历数组元素
循环可以将代码块执行指定的次数.如果您希望一遍又一遍地运行相同的代码,并且每次的值都不同,那么使用循环是很方便的.迭代语句又叫循环语句. JavaScript 支持不同类型的循环: for - 循环代 ...
- [JSOI2010]缓存交换 贪心 & 堆
~~~题面~~~ 题解: 首先我们要使得Miss的次数尽量少,也就是要尽量保证每个点在被访问的时候,这个点已经存在于Cache中. 那么我们可以得到一个结论: 如果Cache已满,那么我们就从Cach ...
- 【BZOJ5296】【CQOI2018】破解D-H协议(BSGS)
[BZOJ5296][CQOI2018]破解D-H协议(BSGS) 题面 BZOJ 洛谷 Description Diffie-Hellman密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方 ...
- Codeforces 864E Fire(背包DP)
背包DP,决策的时候记一下 jc[i][j]=1 表示第i个物品容量为j的时候要选,输出方案的时候倒推就好了 #include<iostream> #include<cstdlib& ...
- bzoj2431: [HAOI2009]逆序对数列(DP)
f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...