【Foreign】Game [博弈论][DP]
Game
Time Limit: 20 Sec Memory Limit: 512 MB
Description
从前有个游戏。游戏分为 k 轮。
给定一个由小写英文字母组成的字符串的集合 S,
在每轮游戏开始时,双方会得到一个空的字符串,
然后两人轮流在该串的末尾添加字符,并且需要保证新的字符串是 S 中某个串的前缀,直到有一方不能操作,则不能操作的一方输掉这一轮。
新的一轮由上一轮输的人先手,最后一轮赢的人获得游戏胜利。
假定双方都采取最优策略,求第一轮先手的一方能否获胜。
Input
输入包含多组数据。
每组数据的第一行包含两个整数 n,k,分别表示字符串的数量和游戏的轮数。
接下来 n 行,每行一个由小写英文字母组成的字符串。
Output
对于每组数据输出一行,若先手能获胜输出 HY wins!,否则输出 Teacher wins!
Sample Input
2 3
a
b
3 1
a
b
c
Sample Output
HY wins!
HY wins!
HINT
1 ≤ n ≤ 1e5,1 ≤ k ≤ 1e9,保证所有字符串长度不超过 1e5,数据组数不超过 10。
Solution

显然Trie上这个DP显然就是为了求:一轮中,先手是否必胜或者必败。显然,一个点如果可以走向必败点那么就可以必胜。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64;
typedef unsigned int u32; const int ONE = 1e6 + ; int n, k;
char s[ONE];
int next[ONE][], total, root = ;
int f[ONE], g[ONE]; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} void Insert()
{
scanf("%s", s + );
int u = root, n = strlen(s + );
for(int i = ; i <= n; i++)
{
int c = s[i] - 'a' + ;
if(!next[u][c]) next[u][c] = ++total;
u = next[u][c];
}
} void Dfs_f(int u)
{
if(!u) return;
int PD = ;
for(int c = ; c <= ; c++) if(next[u][c]) {PD = ; break;}
if(PD) {g[u] = ; return;} PD = ;
for(int c = ; c <= ; c++)
{
Dfs_f(next[u][c]);
if(next[u][c] && f[next[u][c]] == ) PD = ;
}
f[u] = PD;
} void Dfs_g(int u)
{
if(!u) return;
int PD = ;
for(int c = ; c <= ; c++) if(next[u][c]) {PD = ; break;}
if(PD) {g[u] = ; return;} PD = ;
for(int c = ; c <= ; c++)
{
Dfs_g(next[u][c]);
if(next[u][c] && g[next[u][c]] == ) PD = ;
}
g[u] = PD;
} int main()
{
while(scanf("%d %d", &n, &k) != EOF)
{
memset(f, , sizeof(f));
memset(g, , sizeof(g));
memset(next, , sizeof(next));
total = ;
for(int i = ; i <= n; i++)
Insert();
Dfs_f(); Dfs_g();
if(f[] == && g[] == ) printf("HY wins!\n");
else
if(f[] == )
k % == ? printf("HY wins!\n") : printf("Teacher wins!\n");
else
printf("Teacher wins!\n");
}
}
【Foreign】Game [博弈论][DP]的更多相关文章
- 2018.09.25 poj2068 Nim(博弈论+dp)
传送门 题意简述:m个石子,有两个队每队n个人循环取,每个人每次取石子有数量限制,取最后一块的输,问先手能否获胜. 博弈论+dp. 我们令f[i][j]f[i][j]f[i][j]表示当前第i个人取石 ...
- 【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp
题目描述 给出 $n$ 和 $m$ ,$m$ 次询问.每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是 ...
- 【bzoj4550】小奇的博弈 博弈论+dp
题目描述 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边 是黑色棋子,相邻的棋子颜色不同. 小奇可以移动白色棋子,提比可以移动黑色的棋子, ...
- 「模拟赛20181025」御风剑术 博弈论+DP简单优化
题目描述 Yasuo 和Riven对一排\(n\)个假人开始练习.斩杀第\(i\)个假人会得到\(c_i\)个精粹.双方轮流出招,他们在练习中互相学习,所以他们的剑术越来越强.基于对方上一次斩杀的假人 ...
- BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP
BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP Description 农夫约翰的奶牛喜欢玩硬币游戏,因此他发明了一种称为“Xoinc”的两人硬币游戏. 初始时,一个有N(5 ...
- 【CSA49F】【XSY3317】card 博弈论 DP
题目大意 不会博弈论的 yww 在和博弈论大师 yxq 玩一个游戏. 有 \(n\) 种卡牌,第 \(i\) 种卡牌有 \(b_i\) 张. yww 会先把所有 \(B=\sum_{i=1}^nb_i ...
- 湖南大学第十四届ACM程序设计新生杯(重现赛)I:II play with GG(博弈论||DP)
链接:https://ac.nowcoder.com/acm/contest/338/I 来源:牛客网 题目描述 IG won the S championship and many people a ...
- POJ2068 Nim 博弈论 dp
http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...
- bzoj 2798 [Poi2012]Bidding 博弈论+dp
题目大意 A和B两个人在玩一个游戏,这个游戏是他们轮流操作一对整数(x,y). 初始时(x,y)=(1,0),可以进行三种操作: 将(x,y)变成(1,x+y). 将(x,y)变成(2x,y). 将( ...
随机推荐
- ZOJ 1403 F-Safecracker
https://vjudge.net/contest/67836#problem/F "The item is locked in a Klein safe behind a paintin ...
- php添加扩展 在phpinfo能看到该扩展,但在cli用php -m 却看不到,为什么呢,求指教
1. 没有出现的原因是:执行时添加上php.ini的文件就可以了 $ /usr/local/php/bin/php -c /usr/local/php/etc/php.ini -m | grep ...
- django使用ajax提交表单数据报403错解决方法
只需要在.ajaxSetup方法中设置csrfmiddlewaretoken即可 $.ajaxSetup({ data: {csrfmiddlewaretoken: '{{ csrf_token }} ...
- phpmyadmin中缺少mysqli扩展 的结解办法
修改 ;extension=php_mysqli.dll 去掉前面的 ; 以及 调整 php文件夹的目录位置. 这个办法是不是好使,我不确定.这个方法只适合 用win系统 这个,貌似 ...
- mysql中删除重复记录,并保留重复数据中的一条数据的SQL语句
正好想写一条删除重复语句并保留一条数据的SQL,网上查了一部分资料写的很详细,但还是在这里写下自己的理解,以遍后续学习 .如下: 表字段和数据: SQL语句: [sql] view plain cop ...
- ping traceroute原理
ping命令工作原理 ping命令主要是用于检测网络的连通性. Ping命令发送一个ICMP请求报文给目的IP,然后目的IP回复一个ICMP报文. 原理:网络上的机器都有唯一确定的IP地址,我们给目标 ...
- RT-thread 设备驱动组件之SPI设备
本文主要介绍RT-thread中的SPI设备驱动,涉及到的文件主要有:驱动框架文件(spi_dev.c,spi_core.c,spi.h),底层硬件驱动文件(spi_hard.c,spi_hard.h ...
- Keil MDK中Image~~RW_IRAM1~~ZI~~Limit(~表示$)
ARM程序的组成 此处所说的“ARM程序”是指在ARM系统中正在执行的程序,而非保存在ROM中的bin映像(image)文件,这一点清注意区别. 一个ARM程序包含3部分:RO, ...
- BZOJ 1787 紧急集合(LCA)
转换成抽象模型,就是要求一棵树(N个点,有N-1条边表示这个图是棵树)中某一点满足给定三点a,b,c到某一点的距离和最小.那么我们想到最近公共祖先的定义,推出只有集合点在LCA(a,b).LCA(a, ...
- BZOJ 1202 狡猾的商人(带权并查集)
给出了l,r,w.我们就得知了s[r]-s[l-1]=w.也就是说,点l-1和点r的距离为w. 于是可以使用带权并查集,定义dis[i]表示点i到根节点的距离.查询和合并的时候维护一下就OK了. 如果 ...