MapReduce实战(三)分区的实现
需求:
在实战(一)的基础 上,实现自定义分组机制。例如根据手机号的不同,分成不同的省份,然后在不同的reduce上面跑,最后生成的结果分别存在不同的文件中。
对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件。
思考:
需要自定义改造两个机制:
1、改造分区的逻辑,自定义一个partitioner,主要是实现如何进行分组。
2、自定义reducer task的并发任务数,使得多个reduce同时工作。
项目目录如下:
AreaPartition.java:
package cn.darrenchan.hadoop.mr.areapartition; import java.util.HashMap; import org.apache.hadoop.mapreduce.Partitioner; public class AreaPartitioner<KEY, VALUE> extends Partitioner<KEY, VALUE>{ private static HashMap<String,Integer> areaMap = new HashMap<>(); /**
* 这里只是提前设定了一下,其实这里可以写查询数据库,返回号码所在省份的编号
*/
static{
areaMap.put("135", 0);
areaMap.put("136", 1);
areaMap.put("137", 2);
areaMap.put("138", 3);
areaMap.put("139", 4);
} @Override
public int getPartition(KEY key, VALUE value, int numPartitions) {
//从key中拿到手机号,查询手机归属地字典,不同的省份返回不同的组号
int areaCoder = areaMap.get(key.toString().substring(0, 3))==null?5:areaMap.get(key.toString().substring(0, 3));
return areaCoder;
} }
FlowSumArea.java:
package cn.darrenchan.hadoop.mr.areapartition; import java.io.IOException; import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import cn.darrenchan.hadoop.mr.flow.FlowBean; /**
* 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件
* 需要自定义改造两个机制:
* 1、改造分区的逻辑,自定义一个partitioner
* 2、自定义reduer task的并发任务数
*
*/
public class FlowSumArea { public static class FlowSumAreaMapper extends
Mapper<LongWritable, Text, Text, FlowBean> { @Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException { // 拿一行数据
String line = value.toString();
// 切分成各个字段
String[] fields = StringUtils.split(line, "\t"); // 拿到我们需要的字段
String phoneNum = fields[1];
long upFlow = Long.parseLong(fields[7]);
long downFlow = Long.parseLong(fields[8]); // 封装数据为kv并输出
context.write(new Text(phoneNum), new FlowBean(phoneNum, upFlow,
downFlow)); } } public static class FlowSumAreaReducer extends
Reducer<Text, FlowBean, Text, FlowBean> { @Override
protected void reduce(Text key, Iterable<FlowBean> values,
Context context) throws IOException, InterruptedException { long up_flow_counter = 0;
long d_flow_counter = 0; for (FlowBean bean : values) { up_flow_counter += bean.getUpFlow();
d_flow_counter += bean.getDownFlow(); } context.write(key, new FlowBean(key.toString(), up_flow_counter,
d_flow_counter)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration();
Job job = Job.getInstance(conf); job.setJarByClass(FlowSumArea.class); job.setMapperClass(FlowSumAreaMapper.class);
job.setReducerClass(FlowSumAreaReducer.class); // 设置我们自定义的分组逻辑定义
job.setPartitionerClass(AreaPartitioner.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class); // 设置reduce的任务并发数,应该跟分组的数量保持一致,写1不会报错,2,3,4,5均会报错,7,8,9...反而不会报错,因为后面的直接数据为0了
job.setNumReduceTasks(6); FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
FlowBeanArea.java:
package cn.darrenchan.hadoop.mr.flow; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable; public class FlowBean implements WritableComparable<FlowBean> {
private String phoneNum;// 手机号
private long upFlow;// 上行流量
private long downFlow;// 下行流量
private long sumFlow;// 总流量 public FlowBean() {
super();
} public FlowBean(String phoneNum, long upFlow, long downFlow) {
super();
this.phoneNum = phoneNum;
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = upFlow + downFlow;
} public String getPhoneNum() {
return phoneNum;
} public void setPhoneNum(String phoneNum) {
this.phoneNum = phoneNum;
} public long getUpFlow() {
return upFlow;
} public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
} public long getDownFlow() {
return downFlow;
} public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
} public long getSumFlow() {
return sumFlow;
} public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
} @Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
} // 从数据流中反序列出对象的数据
// 从数据流中读出对象字段时,必须跟序列化时的顺序保持一致
@Override
public void readFields(DataInput in) throws IOException {
phoneNum = in.readUTF();
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
} // 将对象数据序列化到流中
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(phoneNum);
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
} @Override
public int compareTo(FlowBean flowBean) {
return sumFlow > flowBean.getSumFlow() ? -1 : 1;
} }
将项目打包成area.jar,并执行命令:
hadoop jar area.jar cn.darrenchan.hadoop.mr.areapartition.FlowSumArea /flow/srcdata /flow/outputarea
我们可以看到如下运行信息:
17/02/26 09:10:54 INFO client.RMProxy: Connecting to ResourceManager at weekend110/192.168.230.134:8032
17/02/26 09:10:54 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
17/02/26 09:10:55 INFO input.FileInputFormat: Total input paths to process : 1
17/02/26 09:10:55 INFO mapreduce.JobSubmitter: number of splits:1
17/02/26 09:10:55 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1488112052214_0005
17/02/26 09:10:55 INFO impl.YarnClientImpl: Submitted application application_1488112052214_0005
17/02/26 09:10:55 INFO mapreduce.Job: The url to track the job: http://weekend110:8088/proxy/application_1488112052214_0005/
17/02/26 09:10:55 INFO mapreduce.Job: Running job: job_1488112052214_0005
17/02/26 09:11:01 INFO mapreduce.Job: Job job_1488112052214_0005 running in uber mode : false
17/02/26 09:11:01 INFO mapreduce.Job: map 0% reduce 0%
17/02/26 09:11:07 INFO mapreduce.Job: map 100% reduce 0%
17/02/26 09:11:19 INFO mapreduce.Job: map 100% reduce 17%
17/02/26 09:11:23 INFO mapreduce.Job: map 100% reduce 33%
17/02/26 09:11:26 INFO mapreduce.Job: map 100% reduce 50%
17/02/26 09:11:27 INFO mapreduce.Job: map 100% reduce 83%
17/02/26 09:11:28 INFO mapreduce.Job: map 100% reduce 100%
17/02/26 09:11:28 INFO mapreduce.Job: Job job_1488112052214_0005 completed successfully
17/02/26 09:11:28 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=1152
FILE: Number of bytes written=652142
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=2338
HDFS: Number of bytes written=526
HDFS: Number of read operations=21
HDFS: Number of large read operations=0
HDFS: Number of write operations=12
Job Counters
Launched map tasks=1
Launched reduce tasks=6
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=2663
Total time spent by all reduces in occupied slots (ms)=83315
Total time spent by all map tasks (ms)=2663
Total time spent by all reduce tasks (ms)=83315
Total vcore-seconds taken by all map tasks=2663
Total vcore-seconds taken by all reduce tasks=83315
Total megabyte-seconds taken by all map tasks=2726912
Total megabyte-seconds taken by all reduce tasks=85314560
Map-Reduce Framework
Map input records=22
Map output records=22
Map output bytes=1072
Map output materialized bytes=1152
Input split bytes=124
Combine input records=0
Combine output records=0
Reduce input groups=21
Reduce shuffle bytes=1152
Reduce input records=22
Reduce output records=21
Spilled Records=44
Shuffled Maps =6
Failed Shuffles=0
Merged Map outputs=6
GC time elapsed (ms)=524
CPU time spent (ms)=3210
Physical memory (bytes) snapshot=509775872
Virtual memory (bytes) snapshot=2547916800
Total committed heap usage (bytes)=218697728
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=2214
File Output Format Counters
Bytes Written=526
运行结果完成之后,我们发现这次生成了6个文件,显示如下:
最终显示结果如下所示,我们看到的确是按照我们预期的进行了相应的分组:
在运行过程中,我们不断监控该过程,看看是不是一共6个reduce同时工作,发现最多的地方确实是6个YarnChild,说明我们的程序正确。
Last login: Sun Feb 26 04:26:01 2017 from 192.168.230.1
[hadoop@weekend110 ~] jps
2473 NameNode
8703 RunJar
9214 Jps
9029 YarnChild
8995 YarnChild
2747 SecondaryNameNode
8978 -- process information unavailable
2891 ResourceManager
2992 NodeManager
8799 MRAppMaster
9053 YarnChild
2569 DataNode
[hadoop@weekend110 ~] jps
2473 NameNode
2747 SecondaryNameNode
2891 ResourceManager
2992 NodeManager
8799 MRAppMaster
2569 DataNode
9330 Jps
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
2747 SecondaryNameNode
2891 ResourceManager
9386 RunJar
2992 NodeManager
2569 DataNode
9495 Jps
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
2747 SecondaryNameNode
2891 ResourceManager
9386 RunJar
9558 Jps
2992 NodeManager
2569 DataNode
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
9580 Jps
2747 SecondaryNameNode
2891 ResourceManager
9386 RunJar
2992 NodeManager
2569 DataNode
[hadoop@weekend110 ~] jps
2473 NameNode
9598 YarnChild
9482 MRAppMaster
2747 SecondaryNameNode
9623 Jps
2891 ResourceManager
9386 RunJar
2992 NodeManager
2569 DataNode
[hadoop@weekend110 ~] jps
2473 NameNode
9650 Jps
9482 MRAppMaster
2747 SecondaryNameNode
2891 ResourceManager
9386 RunJar
2992 NodeManager
2569 DataNode
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
9665 YarnChild
2747 SecondaryNameNode
9681 YarnChild
9696 Jps
2891 ResourceManager
9386 RunJar
2992 NodeManager
2569 DataNode
9704 YarnChild
[hadoop@weekend110 ~] jps
2473 NameNode
9772 Jps
9482 MRAppMaster
9665 YarnChild
2747 SecondaryNameNode
9681 YarnChild
9770 YarnChild
9751 YarnChild
2891 ResourceManager
9386 RunJar
2992 NodeManager
9730 YarnChild
2569 DataNode
9704 YarnChild
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
9817 Jps
9665 -- process information unavailable
2747 SecondaryNameNode
9681 YarnChild
9770 YarnChild
9751 YarnChild
2891 ResourceManager
9386 RunJar
2992 NodeManager
9730 YarnChild
2569 DataNode
9704 YarnChild
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
2747 SecondaryNameNode
9681 YarnChild
9872 Jps
9770 YarnChild
9751 YarnChild
2891 ResourceManager
9386 RunJar
2992 NodeManager
9730 YarnChild
2569 DataNode
9704 YarnChild
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
9921 Jps
2747 SecondaryNameNode
9770 YarnChild
9751 YarnChild
2891 ResourceManager
9386 RunJar
2992 NodeManager
9730 YarnChild
2569 DataNode
9704 YarnChild
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
2747 SecondaryNameNode
9770 YarnChild
9751 -- process information unavailable
2891 ResourceManager
9386 RunJar
10021 Jps
2992 NodeManager
2569 DataNode
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
2747 SecondaryNameNode
10079 Jps
2891 ResourceManager
9386 RunJar
2992 NodeManager
2569 DataNode
[hadoop@weekend110 ~] jps
10090 Jps
2473 NameNode
9482 MRAppMaster
2747 SecondaryNameNode
2891 ResourceManager
2992 NodeManager
2569 DataNode
[hadoop@weekend110 ~] jps
2473 NameNode
9482 MRAppMaster
2747 SecondaryNameNode
10099 Jps
2891 ResourceManager
2992 NodeManager
2569 DataNode
MapReduce实战(三)分区的实现的更多相关文章
- coreseek实战(三):全文搜索在php中应用(使用api接口)
coreseek实战(三):全文搜索在php中应用(使用api接口) 这一篇文章开始学习在php页面中通过api接口,使用coreseek全文搜索. 第一步:综合一下前两篇文章,coreseek实战( ...
- MapReduce教程(二)MapReduce框架Partitioner分区<转>
1 Partitioner分区 1.1 Partitioner分区描述 在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,按照手机号码段划分的话,需要把同一手机号码段的数据放 ...
- Python爬虫实战三之实现山东大学无线网络掉线自动重连
综述 最近山大软件园校区QLSC_STU无线网掉线掉的厉害,连上之后平均十分钟左右掉线一次,很是让人心烦,还能不能愉快地上自习了?能忍吗?反正我是不能忍了,嗯,自己动手,丰衣足食!写个程序解决掉它! ...
- Thrift RPC实战(三) thrift序列化揭秘
本文主要讲解Thrift的序列化机制, 看看thrift作为数据交换格式是如何工作的? 1.构造应用场景: 1). 首先我们先来定义下thrift的简单结构. 1 2 3 4 5 namespace ...
- miniFTP项目实战三
项目简介: 在Linux环境下用C语言开发的Vsftpd的简化版本,拥有部分Vsftpd功能和相同的FTP协议,系统的主要架构采用多进程模型,每当有一个新的客户连接到达,主进程就会派生出一个ftp服务 ...
- MapReduce实战:统计不同工作年限的薪资水平
1.薪资数据集 我们要写一个薪资统计程序,统计数据来自于互联网招聘hadoop岗位的招聘网站,这些数据是按照记录方式存储的,因此非常适合使用 MapReduce 程序来统计. 2.数据格式 我们使用的 ...
- mapreduce实战:统计美国各个气象站30年来的平均气温项目分析
气象数据集 我们要写一个气象数据挖掘的程序.气象数据是通过分布在美国各地区的很多气象传感器每隔一小时进行收集,这些数据是半结构化数据且是按照记录方式存储的,因此非常适合使用 MapReduce 程序来 ...
- Hadoop学习之路(十七)MapReduce框架Partitoner分区
Partitioner分区类的作用是什么? 在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,比如按照省份划分的话,需要把同一省份的数据放到一个文件中:按照性别划分的话,需要 ...
- MapReduce实战--倒排索引
本文地址:http://www.cnblogs.com/archimedes/p/mapreduce-inverted-index.html,转载请注明源地址. 1.倒排索引简介 倒排索引(Inver ...
随机推荐
- 贯通Spark Streaming JobScheduler内幕实现和深入思考
本节主要内容: 一.SparkStreaming Job生成深度思考 二.SparkStreaming Job生成源码解析 JobScheduler的地位非常的重要,所有的关键都在JobSchedul ...
- NDK下vfork+execl启动程序
pid_t _pid = vfork(); if (_pid == 0) {//child process LOGV("[ContextSharing]in child process.&q ...
- 将本地jar包添加到maven中
将需要引入的jar包拷贝到maven项目的WEB-INF/lib中 在pom.xml中配置如下: <dependency> <groupId>com.xxxxx.union&l ...
- java检索文件时加入线程
package xianChengSaomiao; import java.io.File; import java.util.ArrayList; import java.util.List; pu ...
- k8s的Ingress
一.Ingress简介 外部访问集群内的服务,可以通过NodePort或LoadBalancer(这通常由云服务商提供),还可以通过ingress访问. Ingress包含两个组件Ingress Co ...
- cordova百度地图定位Android版插件
本插件利用百度地图提供的定位功能进行Android版手机定位. 为什么没有iOS版? 因为iOS版有官方的定位插件cordova-plugin-geolocation可以使用. 请参照:cordova ...
- GUID转换成16位字符串或19位唯一字符串
整理几个经常使用GUID转换成16位字符串或19位唯一字符串方法: /// <summary> /// 依据GUID获取16位的唯一字符串 /// Author : 付义方 /// < ...
- android 总结
两点说明: 1. 本文我的老大推荐给的, 我自己之前也写过自学的帖子, 现在看看感觉不是很完整, 故转载此篇 2. 本文最后附有<android讲义 第二版> 下载地址, 我个人认为最适 ...
- 11-hibernate,单表GRUD操作实例
1,save 2,update 3,delete 4,get/load(查询单个纪录) 实例代码: import java.io.File; import java.io.FileInputStrea ...
- iOS 扫雷游戏
代码地址如下:http://www.demodashi.com/demo/11254.html 1.项目结构图 Viewcontroller:扫雷逻辑代码 LevelModel:扫雷难度选择代码 2. ...