1.概述

  今天补充一篇关于Flume的博客,前面在讲解高可用的Hadoop平台的时候遗漏了这篇,本篇博客为大家讲述以下内容:

  • Flume NG简述
  • 单点Flume NG搭建、运行
  • 高可用Flume NG搭建
  • Failover测试
  • 截图预览

  下面开始今天的博客介绍。

2.Flume NG简述

  Flume NG是一个分布式,高可用,可靠的系统,它能将不同的海量数据收集,移动并存储到一个数据存储系统中。轻量,配置简单,适用于各种日志收集,并支持Failover和负载均衡。并且它拥有非常丰富的组件。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和Sink,三者组建了一个Agent。三者的职责如下所示:

  • Source:用来消费(收集)数据源到Channel组件中
  • Channel:中转临时存储,保存所有Source组件信息
  • Sink:从Channel中读取,读取成功后会删除Channel中的信息

  下图是Flume NG的架构图,如下所示:

  图中描述了,从外部系统(Web Server)中收集产生的日志,然后通过Flume的Agent的Source组件将数据发送到临时存储Channel组件,最后传递给Sink组件,Sink组件直接把数据存储到HDFS文件系统中。

3.单点Flume NG搭建、运行

  我们在熟悉了Flume NG的架构后,我们先搭建一个单点Flume收集信息到HDFS集群中,由于资源有限,本次直接在之前的高可用Hadoop集群上搭建Flume。

  场景如下:在NNA节点上搭建一个Flume NG,将本地日志收集到HDFS集群。

3.1基础软件

  在搭建Flume NG之前,我们需要准备必要的软件,具体下载地址如下所示:

  JDK由于之前在安装Hadoop集群时已经配置过,这里就不赘述了,若需要配置的同学,可参考《配置高可用的Hadoop平台》。

3.2安装与配置

  • 安装

  首先,我们解压flume安装包,命令如下所示:

[hadoop@nna ~]$ tar -zxvf apache-flume-1.5.2-bin.tar.gz
  • 配置

  环境变量配置内容如下所示:

export FLUME_HOME=/home/hadoop/flume-1.5.2
export PATH=$PATH:$FLUME_HOME/bin

  flume-conf.properties

 
#agent1 name
agent1.sources=source1
agent1.sinks=sink1
agent1.channels=channel1 #Spooling Directory
#set source1
agent1.sources.source1.type=spooldir
agent1.sources.source1.spoolDir=/home/hadoop/dir/logdfs
agent1.sources.source1.channels=channel1
agent1.sources.source1.fileHeader = false
agent1.sources.source1.interceptors = i1
agent1.sources.source1.interceptors.i1.type = timestamp #set sink1
agent1.sinks.sink1.type=hdfs
agent1.sinks.sink1.hdfs.path=/home/hdfs/flume/logdfs
agent1.sinks.sink1.hdfs.fileType=DataStream
agent1.sinks.sink1.hdfs.writeFormat=TEXT
agent1.sinks.sink1.hdfs.rollInterval=1
agent1.sinks.sink1.channel=channel1
agent1.sinks.sink1.hdfs.filePrefix=%Y-%m-%d #set channel1
agent1.channels.channel1.type=file
agent1.channels.channel1.checkpointDir=/home/hadoop/dir/logdfstmp/point
agent1.channels.channel1.dataDirs=/home/hadoop/dir/logdfstmp
 

  flume-env.sh

JAVA_HOME=/usr/java/jdk1.7

  注:配置中的目录若不存在,需提前创建。

3.3启动

  启动命令如下所示:

flume-ng agent -n agent1 -c conf -f flume-conf.properties -Dflume.root.logger=DEBUG,console

  注:命令中的agent1表示配置文件中的Agent的Name,如配置文件中的agent1。flume-conf.properties表示配置文件所在配置,需填写准确的配置文件路径。

3.4效果预览

  之后,成功上传后本地目的会被标记完成。如下图所示:

4.高可用Flume NG搭建

  在完成单点的Flume NG搭建后,下面我们搭建一个高可用的Flume NG集群,架构图如下所示:

  图中,我们可以看出,Flume的存储可以支持多种,这里只列举了HDFS和Kafka(如:存储最新的一周日志,并给Storm系统提供实时日志流)。

4.1节点分配

  Flume的Agent和Collector分布如下表所示:

名称  HOST 角色
Agent1 10.211.55.14 Web Server
Agent2 10.211.55.15 Web Server
Agent3 10.211.55.16  Web Server
Collector1 10.211.55.18 AgentMstr1
Collector2 10.211.55.19 AgentMstr2

  图中所示,Agent1,Agent2,Agent3数据分别流入到Collector1和Collector2,Flume NG本身提供了Failover机制,可以自动切换和恢复。在上图中,有3个产生日志服务器分布在不同的机房,要把所有的日志都收集到一个集群中存储。下面我们开发配置Flume NG集群

4.2配置

  在下面单点Flume中,基本配置都完成了,我们只需要新添加两个配置文件,它们是flume-client.properties和flume-server.properties,其配置内容如下所示:

  • flume-client.properties
 
#agent1 name
agent1.channels = c1
agent1.sources = r1
agent1.sinks = k1 k2 #set gruop
agent1.sinkgroups = g1 #set channel
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 1000
agent1.channels.c1.transactionCapacity = 100 agent1.sources.r1.channels = c1
agent1.sources.r1.type = exec
agent1.sources.r1.command = tail -F /home/hadoop/dir/logdfs/test.log agent1.sources.r1.interceptors = i1 i2
agent1.sources.r1.interceptors.i1.type = static
agent1.sources.r1.interceptors.i1.key = Type
agent1.sources.r1.interceptors.i1.value = LOGIN
agent1.sources.r1.interceptors.i2.type = timestamp # set sink1
agent1.sinks.k1.channel = c1
agent1.sinks.k1.type = avro
agent1.sinks.k1.hostname = nna
agent1.sinks.k1.port = 52020 # set sink2
agent1.sinks.k2.channel = c1
agent1.sinks.k2.type = avro
agent1.sinks.k2.hostname = nns
agent1.sinks.k2.port = 52020 #set sink group
agent1.sinkgroups.g1.sinks = k1 k2 #set failover
agent1.sinkgroups.g1.processor.type = failover
agent1.sinkgroups.g1.processor.priority.k1 = 10
agent1.sinkgroups.g1.processor.priority.k2 = 1
agent1.sinkgroups.g1.processor.maxpenalty = 10000
 

  注:指定Collector的IP和Port。

  • flume-server.properties
 
#set Agent name
a1.sources = r1
a1.channels = c1
a1.sinks = k1 #set channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100 # other node,nna to nns
a1.sources.r1.type = avro
a1.sources.r1.bind = nna
a1.sources.r1.port = 52020
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
a1.sources.r1.interceptors.i1.key = Collector
a1.sources.r1.interceptors.i1.value = NNA
a1.sources.r1.channels = c1 #set sink to hdfs
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path=/home/hdfs/flume/logdfs
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=TEXT
a1.sinks.k1.hdfs.rollInterval=1
a1.sinks.k1.channel=c1
a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d
 

  注:在另一台Collector节点上修改IP,如在NNS节点将绑定的对象有nna修改为nns。

4.3启动

  在Agent节点上启动命令如下所示:

flume-ng agent -n agent1 -c conf -f flume-client.properties -Dflume.root.logger=DEBUG,console

  注:命令中的agent1表示配置文件中的Agent的Name,如配置文件中的agent1。flume-client.properties表示配置文件所在配置,需填写准确的配置文件路径。

  在Collector节点上启动命令如下所示:

flume-ng agent -n a1 -c conf -f flume-server.properties -Dflume.root.logger=DEBUG,console

  注:命令中的a1表示配置文件中的Agent的Name,如配置文件中的a1。flume-server.properties表示配置文件所在配置,需填写准确的配置文件路径。

5.Failover测试

  下面我们来测试下Flume NG集群的高可用(故障转移)。场景如下:我们在Agent1节点上传文件,由于我们配置Collector1的权重比Collector2大,所以Collector1优先采集并上传到存储系统。然后我们kill掉Collector1,此时有Collector2负责日志的采集上传工作,之后,我们手动恢复Collector1节点的Flume服务,再次在Agent1上次文件,发现Collector1恢复优先级别的采集工作。具体截图如下所示:

  • Collector1优先上传

  • HDFS集群中上传的log内容预览

  • Collector1宕机,Collector2获取优先上传权限

  • 重启Collector1服务,Collector1重新获得优先上传的权限

6.截图预览

  下面为大家附上HDFS文件系统中的截图预览,如下图所示:

  • HDFS文件系统中的文件预览

  • 上传的文件内容预览

7.总结

  在配置高可用的Flume NG时,需要注意一些事项。在Agent中需要绑定对应的Collector1和Collector2的IP和Port,另外,在配置Collector节点时,需要修改当前Flume节点的配置文件,Bind的IP(或HostName)为当前节点的IP(或HostName),最后,在启动的时候,指定配置文件中的Agent的Name和配置文件的路径,否则会出错。

高可用Hadoop平台-Flume NG实战图解篇的更多相关文章

  1. 高可用Hadoop平台-实战

    1.概述 今天继续<高可用的Hadoop平台>系列,今天开始进行小规模的实战下,前面的准备工作完成后,基本用于统计数据的平台都拥有了,关于导出统计结果的文章留到后面赘述.今天要和大家分享的 ...

  2. 高可用Hadoop平台-实战尾声篇

    1.概述 今天这篇博客就是<高可用Hadoop平台>的尾声篇了,从搭建安装到入门运行 Hadoop 版的 HelloWorld(WordCount 可以称的上是 Hadoop 版的 Hel ...

  3. 高可用Hadoop平台-Oozie工作流之Hadoop调度

    1.概述 在<高可用Hadoop平台-Oozie工作流>一篇中,给大家分享了如何去单一的集成Oozie这样一个插件.今天为大家介绍如何去使用Oozie创建相关工作流运行与Hadoop上,已 ...

  4. 高可用Hadoop平台-Hue In Hadoop

    1.概述 前面一篇博客<高可用Hadoop平台-Ganglia安装部署>,为大家介绍了Ganglia在Hadoop中的集成,今天为大家介绍另一款工具——Hue,该工具功能比较丰富,下面是今 ...

  5. 高可用Hadoop平台-集成Hive HAProxy

    1.概述 这篇博客是接着<高可用Hadoop平台>系列讲,本篇博客是为后面用 Hive 来做数据统计做准备的,介绍如何在 Hadoop HA 平台下集成高可用的 Hive 工具,下面我打算 ...

  6. 高可用Hadoop平台-探索

    1.概述 上篇<高可用Hadoop平台-启航>博客已经让我们初步了解了Hadoop平台:接下来,我们对Hadoop做进一步的探索,一步一步的揭开Hadoop的神秘面纱.下面,我们开始赘述今 ...

  7. 高可用Hadoop平台-启航

    1.概述 在上篇博客中,我们搭建了<配置高可用Hadoop平台>,接下来我们就可以驾着Hadoop这艘巨轮在大数据的海洋中遨游了.工欲善其事,必先利其器.是的,没错:我们开发需要有开发工具 ...

  8. 高可用Hadoop平台-Ganglia安装部署

    1.概述 最近,有朋友私密我,Hadoop有什么好的监控工具,其实,Hadoop的监控工具还是蛮多的.今天给大家分享一个老牌监控工具Ganglia,这个在企业用的也算是比较多的,Hadoop对它的兼容 ...

  9. 高可用Hadoop平台-HBase集群搭建

    1.概述 今天补充一篇HBase集群的搭建,这个是高可用系列遗漏的一篇博客,今天抽时间补上,今天给大家介绍的主要内容目录如下所示: 基础软件的准备 HBase介绍 HBase集群搭建 单点问题验证 截 ...

随机推荐

  1. 工程中建立多个src目录

    android 工程下可以有多个源代码的目录,不一定都要放到src下面.可以在 .classpath 文件中添加. 默认是这样的: <classpath> <classpathent ...

  2. 【原】灵活运用sessionStorage或者localStorage

    有时,一个app中,后台并没有提供页面中对应的信息接口,需要前端在页面跳转时把某些信息带入下一个页面,一般想到用url后带参数的方法,但是有时需要带的参数过长,就不适合用这个方法了,所以用sessio ...

  3. 一个github账户多台电脑代码提交

    在实际工作生活中,我们可能不一定仅仅在一台电脑上编码,比如:我们平时在单位电脑1上写代码,提交代码到github账户,而我们也可能会在在家里的电脑2上继续工作,提交代码,这样就是在不同的电脑上提交代码 ...

  4. IOS ScrollView放大缩小点击位置并居中

    项目中的一个优化案例,提升用户体验,对地铁线路图点击放大.缩小,并且点击位置居中: 正常ScrollView 我们点击某一点比如屏幕右侧,想要点的位置向左移动到中心位置,很简单只有算出该点位置距中心位 ...

  5. 注释驱动的 Spring cache 缓存介绍

    概述 Spring 3.1 引入了激动人心的基于注释(annotation)的缓存(cache)技术,它本质上不是一个具体的缓存实现方案(例如 EHCache 或者 OSCache),而是一个对缓存使 ...

  6. PHP基础知识2

    1.运算符 1.运算符简单来说就是用来连接各个常量.变量以及函数和其他表达式参与运算的符号! 2.运算符的优先级 2.流程控制 1.流程控制,就是指程序执行的"路线",一般是用相关 ...

  7. <页面里折合与打开>

    主要思想是:通过覆盖,显示的方式.visible 为 true与false,id以及function函数中参数的不同. 具体代码如下: <script type="text/javas ...

  8. CuteSTL——跟着感觉造轮子

    置顶推荐: CuteSTL:https://github.com/jxd134/algorithm/tree/master/CuteSTL TinySTL:https://github.com/zou ...

  9. Spark1.3使用外部数据源时条件过滤只要是字符串类型的值均报错

    CREATE TEMPORARY TABLE spark_tbls USING org.apache.spark.sql.jdbc OPTIONS ( url 'jdbc:mysql://hadoop ...

  10. backtrack下vim的使用

    root@bt:~# vim test.c //vim新建或者编辑test.c,执行后进入vim编辑器,按a键进入编辑状态,输入C代码 #include<stdio.h> void mai ...