http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf

Abstract

This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Distinctive Image Features from Scale-Invariant的更多相关文章

  1. Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍

    Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它. ...

  2. Computer Vision_33_SIFT:Distinctive Image Features from Scale-Invariant Keypoints——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. Distinctive Image Features from Scale-Invariant Keypoints(SIFT) 基于尺度不变关键点的特征描述子——2004年

    Abstract摘要本文提出了一种从图像中提取特征不变性的方法,该方法可用于在对象或场景的不同视图之间进行可靠的匹配(适用场景和任务).这些特征对图像的尺度和旋转不变性,并且在很大范围的仿射失真.3d ...

  4. (转载)Universal Correspondence Network

    转载自:Chris Choy's blog Universal Correspondence Network In this post, we will give a very high-level ...

  5. Computer Vision_18_Image Stitching:Automatic Panoramic Image Stitching using Invariant Features——2007

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  6. Computer Vision_33_SIFT:An Improved RANSAC based on the Scale Variation Homogeneity——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  7. Computer Vision_33_SIFT:LIFT: Learned Invariant Feature Transform——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  8. Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Computer Vision_33_SIFT:PCA-SIFT A More Distinctive Representation for Local Image Descriptors——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

随机推荐

  1. 【现代程序设计】加分作业1-对Stack的理解

    要求:本次加分作业是要阅读这篇文章“ Stack的三种含义”,以及文章下方的评论,然后做出总结. ----------------------------------------华丽的分割线----- ...

  2. N个数的排列算法

    #include <stdio.h> int n = 0; //交换两个数void swap(int *a, int *b) { int m; m = *a; *a = *b; *b = ...

  3. android上传文件到服务器

    package com.spring.sky.image.upload.network; import java.io.DataOutputStream; import java.io.File; i ...

  4. java.lang.NoClassDefFoundError: org/apache/avro/ipc/Responder

    文章发自:http://www.cnblogs.com/hark0623/p/4170174.html  转发请注明     java.lang.NoClassDefFoundError: org/a ...

  5. Memcached启停脚本小结

    编写配置文件 编写启动脚本 vim /etc/rc.d/init.d/memcached startesac and $<!= 0); } elsif (open PIDHANDLE," ...

  6. Spring的lookup-method标签

    Spring的解析源码 public void parseLookupOverrideSubElements(Element beanEle, MethodOverrides overrides) { ...

  7. 01背包 URAL 1073 Square Country

    题目传送门 /* 题意:问n最少能是几个数的平方和 01背包:j*j的土地买不买的问题 详细解释:http://www.cnblogs.com/vongang/archive/2011/10/07/2 ...

  8. POJ2686 Traveling by Stagecoach(状压DP+SPFA)

    题目大概是给一张有向图,有n张票,每张票只能使用一次,使用一张票就能用pi匹马拉着走过图上的一条边,走过去花的时间是边权/pi,问从a点走到b点的最少时间是多少. 用dp[u][S]表示当前在u点且用 ...

  9. bzoj1032 [JSOI2007]祖码Zuma

    1032: [JSOI2007]祖码Zuma Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 672  Solved: 335[Submit][Stat ...

  10. cocos2d CCArray

    CCArray* arr=CCArray::create(); arr->retain();//如果不加这个东西,CCArray会被清空 arr->addObject(CCSprite:: ...