NEFU 2016省赛演练一 B题(递推)
HK
Problem:B
Time Limit:2000ms
Memory Limit:65535K
Description
yy is interested in numbers and yy numbers all of the day, Now yy give us the definition of the HK of a decimal number: if(0 <= x < 10) HK(x) = x, else HK(bit[1]bit[2]..bit[nBit]) = HK(bit[1] + bit[2] +...+bit[nBit]), such as HK(2) = 2, HK(364) = HK(3 + 6 + 4) = HK(13) = HK(1 + 3) = HK(4) = 4. As you can see is easy to a decimal number X's HK(X), but now yy want to know the smallest x such in the range of 1 to x (1 and x included, x >= 1) that there exist n decimal numbers who's HK(x) = m.
Input
There are multi case end with EOF
Each case has two numbers n, m as described above (0 <= n < 10^10000, 1<= m <= 9)
Output
Every case print like this "Case #cas: k" k is the casenumber, k is the smallest x mod 1000000007. If there is no answer just let k = -1.
Sample Input
1 1
2 2
2 1
Sample Output
Case #1: 1
Case #2: 11
Case #3: 10
Hint
In the second case in the range of [1, 11] Only HK(2) and HK(11) equal 2 . So 11 is the smallest number
In the third case in the range of[1, 10] Only HK(1) and HK(10) equal 1. 10 is the smallest number
题意:如果(0 <= x < 10) HK(x) = x, 否则 HK(bit[1]bit[2]..bit[nBit]) = HK(bit[1] + bit[2] +...+bit[nBit]),
例如 HK(2) = 2, HK(364) = HK(3 + 6 + 4) = HK(13) = HK(1 + 3) = HK(4) = 4.
给定n和m,就是求第n个和HK(m)的数组下标。
题解:打表发现HK数组是123456789 123456789 123456789.............
得出递归公式 ans=(n-1)*9+m;
注意n高精度取余,用公式取余一下就行了。
注意n=0的时候即存在第0个HK(m)的最小的数组下标,即ans的最小值也就是x最小值1。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#define mod 1000000007
using namespace std;
typedef long long ll;
char c[];
int main()
{
ll i,n,m,cas=;
while(scanf("%s",c)!=EOF)
{
getchar();
scanf("%lld",&m);
int len=strlen(c);
n=c[]-'';
if(n==)
{
printf("Case #%lld: 1\n",cas++);
continue;
}
for(i=;i<len;i++)
n=(n*+c[i]-'')%mod;
ll ans=(*n-+m+mod)%mod;
printf("Case #%lld: %lld\n",cas++,ans); //注意cas是long long 要用%lld
}
return ;
}
NEFU 2016省赛演练一 B题(递推)的更多相关文章
- NEFU 2016省赛演练一 I题 (模拟题)
这题没名字 Problem:I Time Limit:2000ms Memory Limit:65535K Description Now give you an interger m and a s ...
- NEFU 2016省赛演练一 F题 (高精度加法)
Function1 Problem:F Time Limit:1000ms Memory Limit:65535K Description You know that huicpc0838 has b ...
- UVa 11040 Add bricks in the wall (水题递推)
题意:给定一个金字塔,除了最后一行,每个数都等于支撑它的两个数的和,现在给奇数行的左数奇数位置,求整个金字塔. 析:很容易看出来,从下往上奇数行等于 a[i][j] = (a[i-2][j-1] - ...
- [luogu4310] 绝世好题 (递推)
传送门 题目描述 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len). 输入输出格式 输入格式: 输入文件共2行. 第一行包括 ...
- SCNU ACM 2016新生赛初赛 解题报告
新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...
- (翻译)2016美国数学建模MCM E题(环境)翻译:我们朝向一个干旱的星球?
PROBLEM E: Are we heading towards a thirsty planet? Will the world run out of clean water? According ...
- 经典算法题每日演练——第十七题 Dijkstra算法
原文:经典算法题每日演练--第十七题 Dijkstra算法 或许在生活中,经常会碰到针对某一个问题,在众多的限制条件下,如何去寻找一个最优解?可能大家想到了很多诸如“线性规划”,“动态规划” 这些经典 ...
- 经典算法题每日演练——第十一题 Bitmap算法
原文:经典算法题每日演练--第十一题 Bitmap算法 在所有具有性能优化的数据结构中,我想大家使用最多的就是hash表,是的,在具有定位查找上具有O(1)的常量时间,多么的简洁优美, 但是在特定的场 ...
- 经典算法题每日演练——第八题 AC自动机
原文:经典算法题每日演练--第八题 AC自动机 上一篇我们说了单模式匹配算法KMP,现在我们有需求了,我要检查一篇文章中是否有某些敏感词,这其实就是多模式匹配的问题. 当然你也可以用KMP算法求出,那 ...
随机推荐
- jauery加入项目中,但是在页面中显示没有找到这个文件--springMVC框架
遇到一件很不爽的事情,自己明明已经把jquery的文件放在了项目中,但是在页面中总是看不到效果,开发者模式提示没有找到文件,当时都要郁闷疯了,后来无意间看到了Eclipse中报的错,怎么与Spring ...
- easyui datagrid使用
http://www.cnblogs.com/zgqys1980/archive/2011/01/04/1925775.html 加载相关js和css,因为easyui依赖jquery,所有加载eas ...
- uC/OS-II源码分析
uC/OS-II源码分析 首先从main.c文件看起,下面是uC/OS-II main.C的大致流程: main(){ OSInit(); TaskCreate(...); OSStart(); } ...
- CentOS 6.4 32位系统 LAMP(Apache+MySQL+PHP)安装步骤
先来解释一下,什么是 LAMP.正如标题所言,LAMP 实际上就是 Linux.Apache.MySQL.PHP 四个名称的缩写,当然最后一个 “P” 还有其他说法是 Perl 或者 Python.不 ...
- php + mysql 分布式事务(转)
事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元: 事务应该具有4个属性:原子性.一致性.隔离性.持续性 原子性(atomicity).一个事务是一个不可分割的工作单 ...
- spark1.6配置sparksql 的元数据存储到postgresql中
1:首先配置hive-site.xml <configuration> <property> <name>javax.jdo.option.ConnectionUR ...
- 淘宝(阿里百川)手机客户端开发日记第六篇 Service详解(三)
主题:Service与Activity交互通信 问题的引出:现在有个需求,如果我们有一个下载任务,下载时间耗时比较长,并且当下载完毕后,需要更新UI的内容,这时,service中的bindServic ...
- HTTP HSTS协议和 nginx
导读 Netcraft 公司最近公布了他们检测SSL/TLS网站的研究,并指出只有仅仅5%的用户正确执行了HTTP严格传输安全HSTS.本文介绍nginx如何配置HSTS. 什么是HSTS HTTPS ...
- ruby实现简易计算器
(这些文章都是从我的个人主页上粘贴过来的,大家也可以访问我的主页 www.iwangzheng.com) 回到家里,用的还是windows系统,ruby的编辑器换成了Aptana Studio 3 p ...
- 在pc游览器端模拟移动端幻灯片
用简单的思路写了下pc端模拟web端的图片滑动效果... 效果卡,bug多,完毕,继续学习c3方法写这个,iscroll就是可以模拟这种效果,还在学习中,难点<触点判断> 代码一份 < ...